How do birds learn to sing Partha P. Mitra

This is a song sung by a brown thrasher.

But that’s just one of the thousand
or more that it knows,

and it’s not the only avian virtuoso.

A wood thrush can sing
two pitches at once.

A mockingbird can match the sounds
around it, including car alarms.

And the Australian superb lyrebird

has an incredible, elaborate song
and dance ritual.

These are just a few of
the 4,000 species of songbirds.

Most birds produce short, simple calls,

but songbirds also have
a repertoire of complex vocal patterns

that help them attract mates,

defend territory,

and strengthen their social bonds.

Each songbird species
has its own distinct song patterns,

some with characteristic
regional dialects.

Experienced listeners can even distinguish
individual birds by their unique songs.

So how do birds learn these songs
in the first place?

How do they know to mimic the songs
of their own species?

Are they born knowing how to sing?

A lot of what scientists know about bird
song comes from studying zebra finches.

A baby male zebra finch typically learns
to sing from its father or other males,

starting while it’s still
a fledgling in the nest.

First comes a sensory learning phase,

when the baby finch hears the songs
sung around it and commits them to memory.

The bird starts to vocalize
during the motor learning phase,

practicing until it can
match the song it memorized.

As the bird learns, hearing
the tutor’s song over and over again

is helpful—
up to a point.

If he hears it too many times, the
imitation degrades—

and the source matters.

If the song is played
through a loudspeaker,

he can’t pick it up as easily.

But hide the same loudspeaker inside
a toy painted to look like a zebra finch,

and his learning improves.

What if the baby never hears another
zebra finch’s song?

Interestingly enough, it’ll sing anyway.

Isolated finches still produce
what are called innate or isolate songs.

A specific tune might be taught,

but the instinct to sing seems
to be hardwired into a songbird’s brain.

Innate songs sound different from
the “cultured” songs

learned from other finches—at first.

If isolated zebra finches
start a new colony,

the young birds pick up
the isolate song from their parents.

But the song changes
from generation to generation.

And after a few iterations,

the melody actually starts to resemble

the cultured songs sung
by zebra finches in the wild.

Something about the learning process
must be hardwired, too,

drawing the birds towards the
same song patterns again and again.

This means that basic information
about the zebra finch song

must be stored somewhere
in its genome,

imprinted there by millions
of years of evolution.

At first, this might seem odd,

as we usually think of genetic code as a
source of biochemical or physical traits,

not something like a behavior or action.

But the two aren’t
fundamentally different;

we can connect genomes to
behavior through brain circuitry.

The connection is noisy and quite complex.

It doesn’t simply map single genes
to single behaviors, but it exists.

Genomes contain codes for proteins
that guide brain development,

such as molecules that guide the pathways
of developing axons,

shaping distinct circuits.

Birds’ brains
have so-called “song circuits”

that are active when the birds sing.

These circuits also respond to the song
of a bird’s own species

more strongly than
to other species’ songs.

So the theory is that a bird’s genes
guide development of brain circuits

that relate to singing
and the ability to learn songs.

Then, exposure to songs
shapes those neural circuits

to produce the songs
that are typical to that species.

Genetically encoded or innate behaviors
aren’t unique to songbirds.

They’re widespread in the animal kingdom.

Spectacular examples include

the long-distance migrations
of monarch butterflies and salmon.

So what does this mean for humans?

Are we also born with innate
information written into our genomes

that helps shape our neural circuits,

and ultimately results
in something we know?

Could there be some knowledge

that is unique
and intrinsic to humans as a species?

这是一首棕色鸫鸟唱的歌。

但这只是它所知道的一千个
或更多的一个,

而且它并不是唯一的鸟类大师。

一只画眉鸟可以同时唱
两个音高。

一只知更鸟可以匹配
周围的声音,包括汽车警报器。

澳大利亚一流的琴鸟

有着令人难以置信的、精心制作的
歌舞仪式。

这些只是
4,000 种鸣禽中的一小部分。

大多数鸟类会发出简短而简单的叫声,

但鸣禽也有
一系列复杂的声音模式

,可以帮助它们吸引配偶、

保卫领地

和加强社会纽带。

每种鸣禽种类
都有其独特的鸣叫模式,

其中一些具有独特的
地方方言。

有经验的听众甚至可以
通过它们独特的歌曲来区分个别鸟类。

那么鸟类首先是如何学习这些歌曲
的呢?

他们怎么知道模仿
自己物种的歌声?

他们生来就知道唱歌吗?

科学家们对鸟鸣的很多了解
来自对斑胸草雀的研究。

小雄性斑胸草雀通常会
从它的父亲或其他雄性那里学习唱歌,

从它还是
巢中的雏鸟开始。

首先是感官学习阶段,

当小雀听到
围绕它唱的歌曲并将它们投入记忆时。

这只鸟
在运动学习阶段开始发声,

练习直到它可以
匹配它记住的歌曲。

随着鸟儿的学习,
一遍又一遍地听导师的歌

是有帮助的——
在一定程度上。

如果他听到太多次,
模仿就会退化——

而来源很重要。

如果这首歌是
通过扩音器播放的,

他就不能那么容易地接听了。

但是把同样的扬声器藏在
一个涂成斑胸草雀的玩具里

,他的学习能力就会提高。

如果宝宝再也听不到
斑胸草雀的歌声怎么办?

有趣的是,它无论如何都会唱歌。

孤立的雀类仍然会产生
所谓的先天或孤立的歌曲。

可能会教授特定的曲调,

但唱歌的本能
似乎已经根植于鸣禽的大脑中。

先天的歌声听起来与从其他雀类学来
的“有教养的”歌声不同

——起初。

如果孤立的斑胸草雀
开始新的殖民地

,幼鸟会
从父母那里获得孤立的歌曲。

但是这首歌
代代相传。

而经过几次迭代

,旋律实际上开始类似于

野生斑胸草雀所唱的有教养的歌曲。

关于学习过程的某些东西也
必须是硬连线的,一次又一次地

将鸟类吸引到
相同的歌曲模式。

这意味着
关于斑胸草雀鸣叫的基本信息

必须存储
在其基因组的某个位置,

并在
数百万年的进化过程中留下印记。

起初,这可能看起来很奇怪,

因为我们通常认为遗传密码
是生化或物理特征的来源,

而不是行为或行动之类的东西。

但这两者并没有
本质上的不同。

我们可以通过大脑回路将基因组与行为联系起来

连接嘈杂且相当复杂。

它不是简单地将单个基因映射
到单个行为,而是存在。

基因组
包含指导大脑发育的蛋白质代码,

例如指导
轴突发育途径的分子,

形成不同的回路。

鸟儿的大脑
有所谓的“歌曲回路”

,当鸟儿唱歌时,它们就会活跃起来。

这些电路对
鸟类自己物种的歌声的反应也


对其他物种的歌声更强烈。

因此理论认为,鸟类的基因
指导

与歌唱
和学习歌曲能力相关的大脑回路的发展。

然后,接触歌曲会
塑造这些神经回路,

从而产生
该物种特有的歌曲。

遗传编码或先天
行为并非鸣禽独有。

它们在动物界很普遍。

壮观的例子包括

帝王蝶和鲑鱼的长距离迁徙。

那么这对人类意味着什么呢?

我们是否也天生就有
写入基因组的先天信息,这些信息

有助于塑造我们的神经回路,

并最终产生
我们所知道的东西?

人类作为一个物种会不会有

一些独特的
和固有的知识?