What can you learn from ancient skeletons Farnaz Khatibi

Between 2008 and 2012,

archeologists excavated the rubble
of an ancient hospital in England.

In the process, they uncovered
a number of skeletons.

One in particular belonged
to a wealthy male

who lived in the 11th or 12th century

and died of leprosy between
the ages of 18 and 25.

How do we know all this?

Simply by examining some old,
soil-caked bones?

Even centuries after death,

skeletons carry unique features
that tell us about their identities.

And using modern tools and techniques,
we can read those features as clues.

This is a branch of science known as
biological anthropology.

It allows researchers to piece together
details about ancient individuals

and identify historical events
that affected whole populations.

When researchers uncover a skeleton,

some of the first clues they gather,
like age and gender,

lie in its morphology,

which is the structure, appearance,
and size of a skeleton.

Bones, like the clavicle,
stop growing at age 25,

so a skeleton with a clavicle
that hasn’t fully formed

must be younger than that.

Similarly, the plates in the cranium
can continue fusing up to age 40,

and sometimes beyond.

By combining these with some
microscopic skeletal clues,

physical anthropologists can estimate
an approximate age of death.

Meanwhile, pelvic bones reveal gender.

Biologically, female pelvises are wider,
allowing women to give birth,

where as males are narrower.

Bones also betray the signs
of ancient disease.

Disorders like anemia leave their traces
on the bones.

And the condition of teeth
can reveal clues

to factors like diet and malnutrition,

which sometimes correlate with wealth
or poverty.

A protein called collagen can give us
even more profound details.

The air we breathe,

water we drink,

and food we eat

leaves permanent traces
in our bones and teeth

in the form of chemical compounds.

These compounds contain measurable
quantities called isotopes.

Stable isotopes in bone collagen
and tooth enamel varies among mammals

dependent on where they lived
and what they ate.

So by analyzing these isotopes,

we can draw direct inferences regarding
the diet and location of historic people.

Not only that, but during life,

bones undergo a constant cycle
of remodeling.

So if someone moves from one place
to another,

bones synthesized after that move

will also reflect the new isotopic
signatures of the surrounding environment.

That means that skeletons can be used
like migratory maps.

For instance, between 1-650 AD,

the great city of Teotihuacan in Mexico
bustled with thousands of people.

Researchers examined the isotope ratios
in skeletons' tooth enamel,

which held details of their diets
when they were young.

They found evidence for significant
migration into the city.

A majority of the individuals
were born elsewhere.

With further geological
and skeletal analysis,

they may be able to map where
those people came from.

That work in Teotihuacan is also
an example of how bio-anthropologists

study skeletons in cemeteries
and mass graves,

then analyze their similarities
and differences.

From that information, they can learn
about cultural beliefs,

social norms,

wars,

and what caused their deaths.

Today, we use these tools to answer
big questions about how forces,

like migration and disease,

shape the modern world.

DNA analysis is even possible in some
relatively well-preserved ancient remains.

That’s helping us understand how diseases
like tuberculosis

have evolved over the centuries

so we can build better treatments
for people today.

Ancient skeletons can tell us a
surprisingly great deal about the past.

So if your remains are someday
buried intact,

what might archeologists
of the distant future learn from them?

2008 年至 2012 年间,

考古学家
在英格兰挖掘了一座古老医院的废墟。

在这个过程中,他们发现
了许多骷髅。

其中一个特别属于

一位生活在 11 或 12 世纪

并在
18 至 25 岁之间死于麻风病的富有男性。

我们怎么知道这一切?

仅仅通过检查一些陈旧的、
结块的骨头?

即使在死后几个世纪,

骨骼仍然具有独特的特征
,可以告诉我们他们的身份。

使用现代工具和技术,
我们可以将这些特征解读为线索。

这是一个被称为生物人类学的科学分支

它使研究人员能够拼凑
有关古代个体的详细信息,


确定影响整个人群的历史事件。

当研究人员发现骨骼时,

他们收集的一些第一批线索,
如年龄和性别,

在于其形态,

即骨骼的结构、外观
和大小。

骨骼,就像锁骨一样,
在 25 岁时停止生长,

所以
锁骨尚未完全形成的骨骼

一定比这更年轻。

同样,颅骨中的板块
可以继续融合到 40 岁

,有时甚至更久。

通过将这些与一些
微观骨骼线索相结合,

体质人类学家可以估算
出大致的死亡年龄。

与此同时,骨盆骨揭示了性别。

从生物学上讲,女性的骨盆较宽,
允许女性分娩,

而男性的骨盆较窄。

骨头也暴露
了古代疾病的迹象。

贫血等疾病会
在骨骼上留下痕迹。

牙齿状况
可以揭示

饮食和营养不良等因素的线索,这些因素

有时与财富
或贫困有关。

一种叫做胶原蛋白的蛋白质可以为我们提供
更深刻的细节。

我们呼吸的空气、

喝的水

和吃的食物会以化合物的形式

在我们的骨骼和牙齿

中留下永久的痕迹。

这些化合物含有可测量的
量,称为同位素。 哺乳动物

的骨胶原蛋白
和牙釉质中的稳定同位素

因生活地点
和饮食而异。

因此,通过分析这些同位素,

我们可以直接推断
出历史人物的饮食和位置。

不仅如此,在生命中,

骨骼也会经历不断
的重塑循环。

因此,如果有人从一个地方移动
到另一个地方,

那次移动后合成的骨骼

也将反映周围环境的新同位素
特征。

这意味着骨架可以
像迁移地图一样使用。

例如,在公元 1 至 650 年间,

墨西哥的特奥蒂瓦坎大城
挤满了成千上万的人。

研究人员检查
了骨骼牙釉质中的同位素比率,

其中包含了他们年轻时饮食的详细信息

他们发现了大量
迁移到城市的证据。

大多数
人出生在其他地方。

通过进一步的地质
和骨骼分析,

他们可能能够绘制出
这些人来自哪里的地图。

在特奥蒂瓦坎的这项工作也是
生物人类学家如何

研究墓地
和万人坑中的骨骼,

然后分析它们的异同的一个例子

从这些信息中,他们可以
了解文化信仰、

社会规范、

战争

以及导致他们死亡的原因。

今天,我们使用这些工具来回答
有关

迁移和疾病等力量如何

塑造现代世界的重大问题。

在一些
保存相对完好的古代遗迹中,甚至可以进行 DNA 分析。

这有助于我们了解

几个世纪以来结核病等疾病是如何演变的,

因此我们可以为今天的人们建立更好的治疗方法

古代骨骼可以告诉我们
关于过去的大量惊人信息。

因此,如果有一天你的遗体被
完整地埋葬,

那么
遥远未来的考古学家会从他们身上学到什么?