Lessons from fungi on markets and economics Toby Kiers

So I stand before you
as an evolutionary biologist,

a professor of evolutionary biology,

which sounds like a rather fancy title,
if I may say so myself.

And I’m going to talk about two topics

that aren’t normally
talked about together,

and that’s market economies and fungi.

Or is it fun-GUY, or,
as we say in Europe now, fun-GEE?

There’s still no consensus
on how to say this word.

So I want you to imagine a market economy

that’s 400 million years old,

one that’s so ubiquitous that it operates
in almost every ecosystem of the world,

so huge that it can connect
millions of traders simultaneously,

and so persistent

that it survived mass extinctions.

It’s here, right now, under our feet.

You just can’t see it.

And unlike human economies

that rely on cognition to make decisions,

traders in this market,
they beg, borrow, steal, cheat,

all in the absence of thought.

So hidden from our eyes,

plant roots are colonized by a fungus
called arbuscule mycorrhizae.

Now the fungus forms
these complex networks underground

of fine filaments
thinner than even threads of cotton.

So follow one of these fungi,

and it connects multiple
plants simultaneously.

You can think of it
as an underground subway system,

where each root is a station,

where resources are loaded and unloaded.

And it’s also very dense,

so roughly the length
of many meters, even a kilometer,

in a single gram of dirt.

So that’s the length of 10 football fields

in just a thimbleful of soil.

And it’s everywhere.

So if you passed over a tree,
a shrub, a vine, even a tiny weed,

you passed over a mycorrhizal network.

Roughly 80 percent of all plant species

are associated with these
mycorrhizal fungi.

So what does a root covered in fungi

have to do with our global economy?

And why as an evolutionary biologist
have I spent the last 10 years of my life

learning economic jargon?

Well, the first thing
you need to understand

is that trade deals
made by plant and fungal partners

are surprisingly similar

to those made by us,

but perhaps even more strategic.

You see, plant and fungal partners,

they’re not exchanging stocks and bonds,

they’re exchanging essential resources,

and for the fungus,
that’s sugars and fats.

It gets all of its carbon
directly from the plant partner.

So much carbon, so every year,
roughly five billion tons of carbon

from plants go into
this network underground.

For the root, what they need
is phosphorus and nitrogen,

so by exchanging their carbon

they get access to all of the nutrients
collected by that fungal network.

So to make the trade,

the fungus penetrates
into the root cell of the host

and forms a tiny structure
called an arbuscule,

which is Latin for “little tree.”

Now, you can think of this
as the physical stock exchange

of the trade market.

So up until now, it seems very harmonious.

Right? I scratch your back,
you scratch mine,

both partners get what they need.

But here is where we need to pause

and understand the power
of evolution and natural selection.

You see, there’s no room
for amateur traders on this market.

Making the right trade strategy

determines who lives and who dies.

Now, I use the word strategy,

but of course plant and fungi,
they don’t have brains.

They’re making these exchanges

in the absence of anything
that we would consider as thought.

But, as scientists,
we use behavioral terms

such as strategy

to describe behaviors
to certain conditions,

actions and reactions

that are actually programmed
into the DNA of the organism.

So I started studying
these trade strategies

when I was 19 years old

and I was living in
the tropical rainforests of Panama.

Now, everybody at the time was interested
in this incredible diversity aboveground.

And it was hyperdiversity.
These are tropical rainforests.

But I was interested
in the complexity belowground.

We knew that the networks existed,
and we knew they were important,

and I’m going to say it again,
by important I mean important,

so the basis of all plant nutrition

for all the diversity
that you do see aboveground.

But at the time, we didn’t know
how these networks worked.

We didn’t know how they functioned.

Why did only certain plants
interact with certain fungi?

So fast-forward to when
I started my own group,

and we really began to play
with this trade market.

You see, we would manipulate conditions.

We would create a good trading partner
by growing a plant in the sun

and a poor trading partner
by growing it in the shade.

We would then connect these
with a fungal network.

And we found that the fungi
were consistently good

at discriminating among
good and bad trading partners.

They would allocate more resources
to the host plant giving them more carbon.

Now, we would run
the reciprocal experiments

where we would inoculate a host plant
with good and bad fungi,

and they were also good at discriminating
between these trade partners.

So what you have there is the perfect
conditions for a market to emerge.

It’s a simple market,

but it’s a market nonetheless,

where the better trading partner
is consistently favored.

But is it a fair market?

Now this is where you need
to understand that, like humans,

plants and fungi
are incredibly opportunistic.

There’s evidence that the fungus,
once it penetrates into the plant cell,

it can actually hijack the plant’s
own nutrient uptake system.

It does this by suppressing
the plant’s own ability

to take up nutrients from the soil.

So this creates a dependency
of the plant on the fungus.

It’s a false addiction, of sorts,

whereby the plant has to feed the fungus

just to get access to the resources
right around its own root.

There’s also evidence that the fungi are
good at inflating the price of nutrients.

They do this by extracting
the nutrients from the soil,

but then rather than
trading them with the host,

they hoard them in their network,

so this makes them unavailable
to the plant and other competing fungi.

So basic economics,

as resource availability goes down,
the value goes up.

The plant is forced to pay more
for the same amount of resources.

But it’s not all in favor of the fungus.

Plants can be extremely cunning as well.

There are some orchids –

and I always think orchids somehow
seem like the most devious

of the plant species in the world –

and there are some orchids

that just tap directly into the network

and steal all their carbon.

So these orchids, they don’t even make
green leaves to photosynthesize.

They’re just white.

So rather than photosynthesizing,

tap into the network,

steal the carbon

and give nothing in return.

Now I think it’s fair to say
that these types of parasites

also flourish in our human markets.

So as we began to decode these strategies,

we learned some lessons.

And the first one was that
there’s no altruism in this system.

There’s no trade favors.

We don’t see strong evidence

of the fungus helping
dying or struggling plants

unless it directly benefits
the fungus itself.

Now I’m not saying
if this is good or bad.

Unlike humans, a fungus, of course,
cannot judge its own morality.

And as a biologist,

I’m not advocating for these types
of ruthless neoliberal market dynamics

enacted by the fungi.

But the trade system,

it provides us with a benchmark

to study what an economy looks like

when it’s been shaped by natural selection

for hundreds of millions of years

in the absence of morality,

when strategies are just based

on the gathering and processing
of information,

uncontaminated by cognition:

no jealousy, no spite,

but no hope, no joy.

So we’ve made progress

in decoding the most basic
trade principles at this point,

but as scientists we always
want to take it one step further,

and we’re interested in more complex
economic dilemmas.

And specifically we’re interested
in the effects of inequality.

So inequality has really become
a defining feature

of today’s economic landscape.

But the challenges of inequality

are not unique to the human world.

I think as humans we tend to think
that everything’s unique to us,

but organisms in nature

must face relentless variation
in their access to resources.

How does a fungus
that can again be meters long

change its trade strategy
when it’s exposed simultaneously

to a rich patch and a poor patch?

And, more generally,

how do organisms in nature
use trade to their advantage

when they’re faced with uncertainty

in terms of their access to resources?

Here’s where I have
to let you in on a secret:

studying trade underground
is incredibly difficult.

You can’t see where or when
important trade deals take place.

So our group helped pioneer
a method, a technology,

whereby we could tag nutrients
with nanoparticles,

fluorescing nanoparticles
called quantum dots.

What the quantum dots allow us to do

is actually light up the nutrients

so we can visually track their movements

across the fungal network

and into the host root.

So this allows us finally
to see the unseen,

so we can study how fungi bargain
at a small scale with their plant hosts.

So to study inequality,

we exposed a fungal network

to these varying concentrations
of fluorescing phosphorus,

mimicking patches
of abundance and scarcity

across this artificial landscape.

We then carefully quantified fungal trade.

And we found two things.

The first thing we found

was that inequality encouraged
the fungus to trade more.

So I can use the word “encouraged”
or “stimulated” or “forced,”

but the bottom line is
that compared to control conditions,

inequality was associated
with higher levels of trade.

This is important,

because it suggests that evolving
a trade partnership in nature

can help organisms cope with
the uncertainty of accessing resources.

Second, we found that,
exposed to inequality,

the fungus would move resources
from the rich patch of the network,

actively transport them
to the poor side of the network.

Now, of course, we could see this

because the patches
were fluorescing in different colors.

So at first, this result
was incredibly puzzling.

Was it to help
the poor side of the network?

No. We found that the fungus gained more
by first moving the resources

to where demand was higher.

Simply by changing where
across the network the fungus was trading,

it could manipulate
the value of those resources.

Now this stimulated us to really
dig deeper into how information is shared.

It suggests a high level
of sophistication,

or at least a medium level
of sophistication

in an organism with no cognition.

How is it that a fungus can sense
market conditions across its network

and then make calculations
of where and when to trade?

So we wanted to look about information
and how it’s shared across this network,

how the fungus integrates cues.

So to do that, what you need to do is
dive deep in and get a higher resolution

into the network itself.

We began to study complex flows
inside the hyphal network.

So what you’re looking at right now
is a living fungal network

with the cellular contents
moving across it.

This is happening in real time,

so you can see the time stamp up there.

So this is happening right now.
This video isn’t sped up.

This is what is happening
under our feet right now.

And there’s a couple of things
that I want you to notice.

It speeds up, it slows down,
it switches directions.

So we’re working now with biophysicists

to try to dissect this complexity.

How is the fungus using
these complex flow patterns

to share and process information

and make these trade decisions?

Are fungi better at making
trade calculations than us?

Now here’s where we can potentially
borrow models from nature.

We’re increasingly reliant
on computer algorithms

to make us profitable trades
in split-second time scales.

But computer algorithms and fungi,

they both operate in similar,
uncognitive ways.

The fungi just happens to be
a living machine.

What would happen
if we compare and compete

the trading strategies of these two?

Who would win?

The tiny capitalist that’s been around

since before and
the fall of the dinosaurs?

My money is on the fungus.

Thank you.

(Applause)

所以我站在你们面前,
是一名进化生物学家,

一位进化生物学教授


如果我自己可以这么说的话,这听起来像是一个相当花哨的头衔。

我将讨论两个

通常不会
一起讨论的话题

,那就是市场经济和真菌。

或者是 fun-GUY,还是
像我们现在在欧洲所说的 fun-GEE?

关于如何说这个词仍然没有共识。

所以我想让你想象一个有

4 亿年历史的市场经济

,它无处不在
,几乎在世界上每一个生态系统中运作,它

如此庞大以至于它可以
同时连接数百万交易者,

并且如此持久

以至于它在大规模灭绝中幸存下来。

它就在这里,就在我们脚下。

你只是看不到它。

依靠认知来做出决定的人类经济不同,

在这个市场上的交易者,
他们乞求、借贷、偷窃、欺骗,

所有这些都是在没有思想的情况下进行的。

如此隐藏在我们的眼睛之外,

植物根部被一种
叫做丛枝菌根的真菌定殖。

现在,真菌在地下形成了
这些复杂的网络


细丝甚至比棉线还要细。

因此,跟随其中一种真菌

,它会同时连接多个
植物。

你可以把它想象
成一个地下地铁系统

,每个根都是一个站

,资源在这里装卸。

而且它的密度也很大,在一克泥土

中大约
有几米甚至一公里的长度

所以这只是一小撮土壤中10个足球场的长度

它无处不在。

因此,如果你经过一棵树、
一棵灌木、一株藤蔓,甚至是一株小杂草,

你就会经过一个菌根网络。

大约 80% 的植物

物种与这些
菌根真菌有关。

那么真菌所覆盖的根

与我们的全球经济有什么关系呢?

为什么作为一名进化
生物学家,我在生命的最后 10 年里一直在

学习经济术语?

嗯,你需要了解的第一件事

是,
植物和真菌合作伙伴达成的贸易协议

我们达成的协议惊人地相似,

但可能更具战略意义。

你看,植物和真菌的合作伙伴,

他们不是在交换股票和债券,

而是在交换基本资源,

而对于真菌来说,
那就是糖和脂肪。


直接从工厂合作伙伴那里获得所有碳。

如此多的碳,每年
大约有 50 亿吨

来自植物的碳进入
这个地下网络。

对于根,它们需要的
是磷和氮,

因此通过交换它们的碳,

它们可以获得
该真菌网络收集的所有营养物质。

因此,为了进行交易

,真菌会渗透
到宿主的根细胞中

,形成一种
叫做丛枝的

微小结构,在拉丁语中是“小树”的意思。

现在,您可以将其
视为

交易市场的实物证券交易所。

所以到现在为止,都显得很和谐。

对? 我挠你的背,
你挠我的背,

双方各得其所。

但在这里我们需要停下

来了解
进化和自然选择的力量。

你看,
这个市场上没有业余交易者的空间。

制定正确的贸易策略

决定了谁生谁死。

现在,我使用策略这个词,

但当然植物和真菌,
它们没有大脑。

他们

在没有
任何我们认为是思想的情况下进行这些交流。

但是,作为科学家,
我们使用

诸如策略之类的

行为术语来描述
特定条件下的行为、

行为和反应,这些行为和反应

实际上已被编程
到有机体的 DNA 中。

所以我在 19 岁时就开始研究
这些贸易策略,

当时

我生活在
巴拿马的热带雨林中。

现在,当时的每个人都
对这种令人难以置信的地上多样性感兴趣。

这是超多样性。
这些是热带雨林。

但我对
地下的复杂性很感兴趣。

我们知道网络的存在
,我们知道它们很重要

,我要再说一遍
,重要的意思是重要的,

所以你在地上看到的所有多样性的所有植物营养的基础

但当时,我们不
知道这些网络是如何运作的。

我们不知道它们是如何运作的。

为什么只有某些植物
与某些真菌相互作用?

这么快进到
我成立自己的团队时

,我们才真正开始
涉足这个贸易市场。

你看,我们会操纵条件。

我们将
通过在阳光下种植植物来创造

一个好的贸易伙伴,
通过在阴凉处种植它来创造一个糟糕的贸易伙伴。

然后我们将这些
与真菌网络连接起来。

我们发现
真菌一直

擅长区分
好坏贸易伙伴。

他们会为寄主植物分配更多的资源
,从而为它们提供更多的碳。

现在,我们将
进行互惠实验

,给寄主植物
接种好真菌和坏真菌

,它们也擅长
区分这些贸易伙伴。

所以你所拥有的就是市场出现的完美
条件。

这是一个简单的市场,

但它仍然是一个

更好的贸易伙伴
始终受到青睐的市场。

但这是一个公平的市场吗?

现在这就是你
需要了解的地方,就像人类一样,

植物和真菌
是非常机会主义的。

有证据表明,这种真菌
一旦进入植物细胞,

实际上就可以劫持植物
自身的养分吸收系统。

它通过
抑制植物自身

从土壤中吸收养分的能力来做到这一点。

所以这会造成
植物对真菌的依赖。

某种意义上,这是一种虚假的成瘾,

植物必须喂食

真菌才能获得
其根部周围的资源。

还有证据表明,真菌
擅长抬高营养物的价格。

他们通过
从土壤中提取养分来做到这一点,

但随后
他们没有与宿主进行交易,而是将

它们囤积在自己的网络中,

因此这使得
植物和其他竞争真菌无法使用它们。

所以基本经济学,

随着资源可用性下降
,价值上升。

工厂被迫
为相同数量的资源支付更多费用。

但这并不完全有利于真菌。

植物也可以非常狡猾。

有一些兰花

——我一直认为兰花
似乎是世界上最狡猾

的植物物种——

还有一些兰花

直接进入网络

并窃取所有的碳。

所以这些兰花,它们甚至不制造
绿叶来进行光合作用。

他们只是白人。

因此,与其进行光合作用,不如

进入网络,

窃取碳

,不给予任何回报。

现在我认为可以公平地说
,这些类型的寄生虫

也在我们的人类市场中蓬勃发展。

因此,当我们开始解读这些策略时,

我们吸取了一些教训。

第一个是
这个系统没有利他主义。

没有贸易优惠。

我们没有看到

真菌帮助
垂死或挣扎的植物的有力证据,

除非它直接
有益于真菌本身。

现在我不是
说这是好是坏。

与人类不同,真菌当然
不能判断自己的道德。

作为一名生物学家,

我并不提倡这种由真菌
产生的无情的新自由主义市场动态

但是贸易体系,

它为我们提供了一个基准

来研究一个经济

在没有道德的情况下由数亿年的自然选择塑造时的样子,

当战略只是

基于信息的收集和处理
时,

不受认知的污染:

没有嫉妒,没有怨恨,

但没有希望,没有快乐。

因此,

在这一点上,我们在解读最基本的贸易原则方面取得了进展,

但作为科学家,我们总是
希望更进一步

,我们对更复杂的
经济困境感兴趣。

特别是我们
对不平等的影响感兴趣。

因此,不平等确实已

成为当今经济格局的一个决定性特征。

但不平等的挑战

并非人类世界独有。

我认为作为人类,我们倾向于
认为一切对我们来说都是独一无二的,

但自然界中的生物体在获取资源方面

必须面临无情的变化

当真菌同时暴露于富集区和贫区时,
又是几米长的真菌如何

改变其贸易策略

而且,更一般地说,当

自然界中的生物在获取资源方面面临不确定性时,它们如何
利用贸易来发挥自己的优势

这里我
要告诉你一个秘密:

研究地下贸易
非常困难。

您无法看到
重要的贸易交易发生在何时何地。

所以我们的小组帮助开创
了一种方法,一种技术,

我们可以
用纳米粒子标记营养物质,这种

荧光纳米粒子
称为量子点。

量子点允许我们做

的实际上是点亮营养物质,

这样我们就可以直观地跟踪它们

穿过真菌网络

并进入宿主根部的运动。

所以这让我们
终于看到了看不见的东西,

所以我们可以研究真菌如何
与它们的植物宿主进行小规模的讨价还价。

因此,为了研究不平等,

我们将一个真菌网络

暴露在这些不同浓度
的荧光磷中,

模拟

这个人工景观中的丰富和稀缺斑块。

然后,我们仔细量化了真菌贸易。

我们发现了两件事。

我们发现的第一件事

是不平等
鼓励真菌进行更多交易。

所以我可以使用“鼓励”
或“刺激”或“强迫”这个词,

但底线是
,与控制条件相比,

不平等
与更高水平的贸易有关。

这很重要,

因为它表明
在自然界中发展贸易伙伴关系

可以帮助生物体应对
获取资源的不确定性。

其次,我们发现,
在不平等的情况下

,真菌会将资源
从网络的富裕区域转移,

主动将它们输送
到网络的贫穷一侧。

现在,当然,我们可以看到这一点,

因为斑块
发出不同颜色的荧光。

所以起初,这个结果
令人难以置信的令人费解。

是为了帮助
网络的穷人吗?

不。我们发现,
首先将资源

转移到需求更高的地方,真菌会获得更多收益。

只需改变
真菌在网络中的交易位置,

它就可以操纵
这些资源的价值。

现在,这激发了我们真正
深入挖掘信息的共享方式。

它表明没有认知的有机体具有高度
的复杂性,

或者至少是中等水平
的复杂

性。

真菌如何
通过其网络感知市场状况

,然后计算
出交易地点和时间?

所以我们想了解信息
以及它是如何在这个网络中共享的,

真菌是如何整合线索的。

所以要做到这一点,你需要做的是
深入研究并获得更高

分辨率的网络本身。

我们开始研究
菌丝网络内的复杂流动。

所以你现在看到的
是一个活的真菌网络

,细胞内容
在其中移动。

这是实时发生的,

因此您可以在那里看到时间戳。

所以这正在发生。
此视频没有加速。

这就是现在我们脚下正在发生的事情

我想让你注意几件事。

它加速,它减速,
它改变方向。

所以我们现在正与生物物理学家合作

,试图剖析这种复杂性。

真菌如何使用
这些复杂的流动模式

来共享和处理信息

并做出这些贸易决策?

真菌比我们更擅长进行
贸易计算吗?

现在,我们可以
从大自然中借用模型。

我们越来越
依赖计算机算法

来使我们
在瞬间的时间尺度上进行有利可图的交易。

但是计算机算法和真菌,

它们都以相似的、
不可认知的方式运作。

真菌恰好是
一台活机器。

如果我们比较和竞争

这两种交易策略会发生什么?

谁会赢? 自古以来

就存在的小资本家


恐龙的陨落?

我的钱花在了真菌上。

谢谢你。

(掌声)