Can steroids save your life Anees Bahji

Steroids: they’re infamous
for their use in sports.

But they’re also found in inhalers,
creams to treat poison ivy and eczema,

and shots to ease inflammation.

The steroids in these medicines aren’t
the same as the ones used to build muscle.

In fact, they’re all based on
yet another steroid—

one our body produces naturally,
and we can’t live without.

Taking a step back, the reason
there are so many different steroids

is because the term refers to substances
with a shared molecular structure,

rather than shared effects on the body.

Steroids can be naturally occurring
or synthetic,

but what all steroids have in common
is a molecular structure

that consists of a base of four rings
made of 17 carbon atoms

arranged in three hexagons
and one pentagon.

A molecule must contain
this exact arrangement to be a steroid,

though most also have side chains—

additional atoms that can dramatically
impact the molecule’s function.

Steroids get their name
from the fatty molecule cholesterol.

In fact, our bodies make steroids
out of cholesterol.

That fatty cholesterol base
means that steroids

are able to cross fatty cell membranes
and enter cells.

Within the cell, they can directly
influence gene expression

and protein synthesis.

This is different from many other types
of signaling molecules,

which can’t cross the cell membrane

and have to create their effects
from outside the cell,

through more complicated pathways.

So steroids can create their effects
faster than those other molecules.

Back to the steroids
in anti-inflammatory medications:

all of these are based on a naturally
occurring steroid called cortisol.

Cortisol is the body’s
primary stress signal,

and it has a huge range of functions.

When we experience a stressor—

anything from a fight with a friend,
to spotting a bear,

to an infection or low blood sugar—

the brain reacts by sending a signal from
the hypothalamus to the pituitary gland.

The pituitary gland then sends a signal
to the adrenal glands.

The adrenal glands produce cortisol,
and release some constantly.

But when they receive the signal
from the pituitary gland,

they release a burst of cortisol,

which spurs the body to generate
more glucose for energy,

decrease functions not immediately
related to survival, like digestion,

and can activate
a fight-flight-or-freeze response.

This is helpful in the short term,
but can cause undesirable side effects

like insomnia and lowered mood
if they last too long.

Cortisol also interacts
with the immune system in complex ways—

depending on the situation,

it can increase or decrease
certain immune functions.

In the process of fighting infection,

the immune system
often creates inflammation.

Cortisol suppresses the immune system’s
ability to produce inflammation,

which, again,
can be useful in the short term.

But too much cortisol
can have negative impacts,

like reducing the immune system’s ability
to regenerate bone marrow and lymph nodes.

To prevent levels
from staying high for too long,

cortisol suppresses the signal
that causes the adrenal glands

to release more cortisol.

Medicinal corticosteroids channel
cortisol’s effects on the immune system

to fight allergic reactions,
rashes, and asthma.

All these things are forms
of inflammation.

There are many synthetic steroids
that share the same basic mechanism:

they enhance the body’s cortisol supply,

which in turn shuts down
the hyperactive immune responses

that cause inflammation.

These corticosteroids sneak into cells
and can turn off the “fire alarm”

by suppressing gene expression
of inflammatory signals.

The steroids in inhalers and creams impact
only the affected organ—

the skin, or the lungs.

Intravenous or oral versions, used
to treat chronic autoimmune conditions

like lupus or inflammatory bowel disease,
impact the whole body.

With these conditions, the body’s
immune system attacks its own cells,

a process analogous to a constant
asthma attack or rash.

A constant low dose of steroids

can help keep this renegade
immune response under control—

but because of the negative psychological
and physiological effects

of longterm exposure,

higher doses are reserved
for emergencies and flare-ups.

While an asthma attack, poison ivy welts,
and irritable bowel syndrome

might seem totally unrelated,
they all have something in common:

an immune response
that’s doing more harm than good.

And while corticosteroids
won’t give you giant muscles,

they can be the body’s best defense
against itself.

类固醇:它们
因在运动中的使用而臭名昭著。

但它们也存在于吸入器、
治疗毒藤和湿疹的药膏

以及缓解炎症的注射剂中。

这些药物中的类固醇
与用于锻炼肌肉的类固醇不同。

事实上,它们都基于
另一种类固醇——

我们的身体自然产生的一种
,我们不能没有。

退一步说,之所以
有这么多不同的类固醇,

是因为该术语指的是
具有共同分子结构的物质,

而不是对身体的共同影响。

类固醇可以是天然存在的
或合成的,

但所有类固醇的共同点
是分子

结构由四个环组成,该环
由 17 个碳原子

组成,排列成三个六边形
和一个五边形。

一个分子必须包含
这种精确的排列才能成为类固醇,

尽管大多数分子也有侧链——

可以显着
影响分子功能的额外原子。

类固醇的名字
来源于脂肪分子胆固醇。

事实上,我们的身体会
利用胆固醇制造类固醇。

脂肪胆固醇基础
意味着类

固醇能够穿过脂肪细胞膜
并进入细胞。

在细胞内,它们可以直接
影响基因表达

和蛋白质合成。

这与许多其他类型
的信号分子不同,

后者不能穿过细胞膜

,必须

通过更复杂的途径从细胞外产生作用。

所以类固醇可以
比其他分子更快地产生效果。

回到
抗炎药物中的类固醇:

所有这些都是基于一种
叫做皮质醇的天然类固醇。

皮质醇是身体的
主要压力信号

,它具有广泛的功能。

当我们遇到压力源时——

从与朋友打架
、发现熊

、感染或低血糖——

大脑会通过从下丘脑向脑垂体发送信号来做出反应

然后垂体向肾上腺发送信号

肾上腺产生皮质醇,
并不断释放一些。

但是当它们收到来自脑垂体的信号时

它们会释放出大量的皮质醇

,刺激身体产生
更多的葡萄糖作为能量,

减少
与生存没有直接关系的功能,比如消化,

并且可以
激活战斗-逃跑-或- 冻结响应。

这在短期内很有帮助,
但如果持续时间过长,可能会导致

失眠和情绪低落等不良副作用

皮质醇还
以复杂的方式与免疫系统相互作用——

根据情况,

它可以增加或减少
某些免疫功能。

在对抗感染的过程中

,免疫系统
经常会产生炎症。

皮质醇抑制免疫系统
产生炎症的能力,


在短期内同样有用。

但是过多的皮质醇
会产生负面影响,

例如降低免疫系统
再生骨髓和淋巴结的能力。

为了防止
水平太久,

皮质醇会抑制
导致

肾上腺释放更多皮质醇的信号。

药用皮质类固醇会引导
皮质醇对免疫系统的影响,

以对抗过敏反应、
皮疹和哮喘。

所有这些都是
炎症的形式。

有许多合成类固醇
具有相同的基本机制:

它们增强身体的皮质醇供应

,进而关闭导致炎症
的过度活跃的免疫

反应。

这些皮质类固醇潜入细胞
,可以

通过
抑制炎症信号的基因表达来关闭“火警”。

吸入器和乳膏中的类固醇
只影响受影响的器官——

皮肤或肺。

用于治疗狼疮或炎症性肠病等慢性自身免疫性疾病的静脉内或口服版本会

影响整个身体。

在这些情况下,身体的
免疫系统会攻击自己的细胞,

这一过程类似于持续的
哮喘发作或皮疹。

恒定的低剂量类固醇

可以帮助控制这种反常的
免疫反应——

但由于长期接触会产生负面的心理
和生理

影响,

因此
为紧急情况和突发事件保留更高剂量。

虽然哮喘发作、毒藤伤
和肠易激综合征

似乎完全无关,
但它们都有一些共同点:

一种弊大于利的免疫反应

虽然皮质类固醇
不会给你带来巨大的肌肉,

但它们可以成为身体对自身的最佳防御