Lifesaving scientific tools made of paper Manu Prakash

So, I love making tools
and sharing them with people.

I remember as a child,

my first tool I built
was actually a microscope

that I built by stealing lenses
from my brother’s eyeglasses.

He wasn’t that thrilled.

But, you know, maybe
because of that moment,

30 years later,

I’m still making microscopes.

And the reason I built these tools
is for moments like this.

(Video) Girl: I have
black things in my hair –

Manu Prakash: This is a school
in the Bay Area.

(Video) MP: The living world
far supersedes our imagination

of how things actually work.

(Video) Boy: Oh my God!

MP: Right – oh my God!

I hadn’t realized this would be
such a universal phrase.

Over the last two years,

in my lab,

we built 50,000 Foldscopes

and shipped them
to 130 countries in the world,

at no cost to the kids we sent them to.

This year alone,

with the support of our community,

we are planning to ship
a million microscopes

to kids around the world.

What does that do?

It creates an inspiring community
of people around the world,

learning and teaching each other,

from Kenya to Kampala
to Kathmandu to Kansas.

And one of the phenomenal things
that I love about this

is the sense of community.

There’s a kid in Nicaragua

teaching others how to identify
mosquito species that carry dengue

by looking at the larva
under a microscope.

There’s a pharmacologist
who came up with a new way

to detect fake drugs anywhere.

There is a girl who wondered:

“How does glitter actually work?”

and discovered the physics
of crystalline formation in glitter.

There is an Argentinian doctor

who’s trying to do field cervical cancer
screening with this tool.

And yours very truly found
a species of flea

that was dug inside my heel in my foot
one centimeter deep.

Now, you might think
of these as anomalies.

But there is a method to this madness.

I call this “frugal science” –

the idea of sharing
the experience of science,

and not just the information.

To remind you:

there are a billion people on this planet

who live with absolutely
no infrastructure:

no roads,

no electricity

and thus, no health care.

Also, there a billion kids
on this planet that live in poverty.

How are we supposed to inspire them

for the next generation
of solution makers?

There are health care workers
that we put on the line

to fight infectious diseases,

to protect us with absolutely
bare-minimum tools and resources.

So as a lab at Stanford,

I think of this from a context
of frugal science

and building solutions
for these communities.

Often we think about being able to do
diagnosis under a tree, off-grid.

I’ll tell you two examples
today of new tools.

One of them starts in Uganda.

In 2013,

on a field trip to detect
schistosomiasis with Foldscopes,

I made a minor observation.

In a clinic,

in a far, remote area,

I saw a centrifuge
being used as a doorstop.

I mean – quite literally, the doorstop.

And I asked them and they said,

“Oh, we don’t actually have electricity,

so this piece of junk
is good as a doorstop.”

Centrifuges, for some of you
who don’t know,

are the pinnacle tool to be able
to do sample processing.

You separate components
of blood or body fluids

to be able to detect
and identify pathogens.

But centrifuges are bulky, expensive –

cost around 1,000 dollars –

and really hard to carry out in the field.

And of course,

they don’t work without power.

Sound familiar?

So we started thinking
about solving this problem,

and I came back –

kept thinking about toys.

Now …

I have a few with me here.

I first started with yo-yos …

and I’m a terrible yo-yo thrower.

Because these objects spin,

we wondered,

could we actually use
the physics of these objects

to be able to build centrifuges?

This was possibly the worst
throw I could make.

But you might start realizing,

if you start exploring
the space of toys –

we tried these spinning tops,

and then in the lab,

we stumbled upon this wonder.

It’s the whirligig,
or a buzzer, or a rundle.

A couple of strings and a little disk,

and if I push, it spins.

How many of you have played
with this as a kid?

This is called a button-on-a-string.

OK, maybe 50 percent of you.

What you didn’t realize –

that this little object

is the oldest toy
in the history of mankind …

5,000 years ago.

We have found relics of this object
hidden around on our planet.

Now the irony is,

we actually don’t understand
how this little thing works.

That’s when I get excited.

So we got back to work,

wrote down a couple of equations.

If you take the input torque
that you put in,

you take the drag on this disc,

and the twist drag on these strings,

you should be able
to mathematically solve this.

This is not the only equation in my talk.

Ten pages of math later,

we could actually write down
the complete analytical solution

for this dynamic system.

And out comes what we call “Paperfuge.”

That’s my postdoc Saad Bhamla,

who’s the co-inventor of Paperfuge.

And to the left, you see
all the centrifuges

that we’re trying to replace.

This little object that you see right here

is a disc, a couple
of strings and a handle.

And when I spin

and I push,

it starts to spin.

Now, when you realize,

when you do the math,

when we calculate the rpm for this object,

mathematically, we should be able
to go all the way to a million rpm.

Now, there is a little twist
in human anatomy,

because the resonant frequency
of this object is about 10 hertz,

and if you’ve ever played the piano,

you can’t go higher
than two or three hertz.

The maximum speed we’ve been able
to achieve with this object

is not 10,000 rpm,

not 50,000 rpm –

120,000 rpm.

That’s equal to 30,000 g-forces.

If I was to stick you right here
and have it spin,

you would think about the types
of forces you would experience.

One of the factors of a tool like this

is to be able to do diagnosis with this.

So, I’m going to do
a quick demo here, where –

this is a moment where I’m going
to make a little finger prick,

and a tiny drop of blood
is going to come out.

If you don’t like blood,
you don’t have to look at it.

Here is a little lancet.

These lancets are available everywhere,

completely passive.

And if I’ve had breakfast today …

That didn’t hurt at all.

OK, I take a little capillary
with a drop of blood –

now this drop of blood has answers,

that’s why I’m interested in it.

It might actually tell me whether
I have malaria right now or not.

I take a little capillary,

and you see it starts wicking in.

I’m going to draw a little more blood.

And that’s good enough for right now.

Now, I just seal this capillary
by putting it in clay.

And now that’s sealed the sample.

We’re going to take the sample,

mount it on Paperfuge.

A little piece of tape
to make a sealed cavity.

So now the sample is completely enclosed.

And we are ready for a spin.

I’m pushing and pulling with this object.

I’m going to load this up …

And you see the object starts spinning.

Unlike a regular centrifuge,

this is a counter-rotating centrifuge.

It goes back and forth, back and forth …

And now I’m charging it up,

and you see it builds momentum.

And now – I don’t know
if you can hear this –

30 seconds of this,

and I should be able to separate
all the blood cells with the plasma.

And the ratio of those blood
cells to plasma –

(Applause)

Already, if you see right here,

if you focus on this,

you should be able to see
a separated volume

of blood and plasma.

And the ratio of that actually tells me
whether I might be anemic.

One of the aspects of this is,
we build many types of Paperfuges.

This one allows us to identify
malaria parasites

by running them for a little longer,

and we can identify malaria parasites
that are in the blood

that we can separate out and detect
with something like a centrifuge.

Another version of this allows me
to separate nucleic acids

to be able to do nucleic acid tests
out in the field itself.

Here is another version that allows me
to separate bulk samples,

and then, finally,

something new that we’ve been working on

to be able to implement the entire
multiplex test on an object like this.

So where you do the sample preparation
and the chemistry in the same object.

Now …

this is all good,

but when you start thinking about this,

you have to share these tools with people.

And one of the things we did is –
we just got back from Madagascar;

this is what clinical trials
for malaria look like –

(Laughter)

You can do this while having coffee.

But most importantly,

this is a village six hours from any road.

We are in a room with one of the senior
members of the community

and a health care worker.

It really is this portion of the work
that excites me the most –

that smile,

to be able to share simple but powerful
tools with people around the world.

Now, I forgot to tell you this,

that all of that cost me 20 cents to make.

OK, in the negative time I have left,

I’ll tell you about the most recent –

(Laughter)

invention from our lab.

It’s called Abuzz –

the idea that all of you
could help us fight mosquitoes;

you could all help us track our enemies.

These are enemies because they cause
malaria, Zika, chikungunya, dengue.

But the challenge is that we actually
don’t know where our enemies are.

The world map for where
mosquitoes are is missing.

So we started thinking about this.

There are 3,500 species of mosquitoes,

and they’re all very similar.

Some of them are so identical

that even an entomologist cannot
identify them under a microscope.

But they have an Achilles' heel.

This is what mosquitoes flirting
with each other looks like.

That’s a male chasing a female.

They’re actually talking to each other
with their wingbeat frequencies.

(Buzzing sound)

And thus, they have a signature.

We realized that using a regular phone,

a $5-10 flip phone –

how many remember what this object is?

(Laughter)

We can record these acoustic
signatures from mosquitoes.

I’ll tell you exactly how to do this.

I caught some mosquitoes outside.

Unlike Bill [Gates], I’m not
going to release them.

(Laughter)

But I will tell you how
to record from this.

All you do is tap them and they fly.

You can first test –

I can actually hear that.

And you bring your phone,
which has microphones –

it turns out the mics
are so damn good already,

even on regular phones,

that you can pick up
this near-field signature.

And since I’m out of time,

let me just play the recording
that I made a day ago.

(Mosquitoes buzz)

This is all the charming sound
that you heard before

that you all love.

One of the contexts of this

is that being able to do this
with a regular cell phone

allows us to map mosquito species.

Using a flip phone,

we mapped one of the largest
acoustic databases

with 25 to 20 species of mosquitoes
that carry human pathogens.

And from this and machine learning,

anybody who uploads this data,

we can identify and tell the probability

of what species of mosquitoes
you’re actually working with.

We call this Abuzz,
and if any of you want to sign up,

just go to the website.

Let me close with something

that’s very important
and dear to my heart.

One of the challenges of today
is we have terrible problems.

We have a billion people
with absolutely no health care,

climate change, biodiversity loss,

on and on and on.

And we hope that science
is going to provide the answer.

But before you leave this theatre today,

I want you to promise one thing.

We’re going to make science accessible –

not just to the people who can afford it,

but a billion others who can’t.

Let’s make science and scientific
literacy a human right.

The moment that you pass the tingling
feeling of making a discovery

to another child,

you’re enabling them to be
the next group of people

who will actually solve these problems.

Thank you.

(Applause)

所以,我喜欢制作工具
并与人们分享。

我记得小时候,

我制造的第一个工具
实际上是一台显微镜

,它是通过偷
我兄弟眼镜上的镜片制成的。

他并没有那么激动。

但是,你知道,也许
是因为那一刻,

30 年后,

我仍在制造显微镜。

我构建这些工具的原因
就是为了这样的时刻。

(视频)女孩:
我的头发上有黑色的东西

——Manu Prakash:这是湾区的一所学校

(视频)MP:生活世界
远远超越了我们

对事物实际运作方式的想象。

(视频)男孩:天哪!

MP:对——我的天啊!

我没有意识到这是
一个如此普遍的短语。

在过去的两年里,

在我的实验室里,

我们制造了 50,000 台 Foldscopes

,并将它们运送
到世界上 130 个国家,而

我们将它们送到的孩子们都无需支付任何费用。

仅今年一年,

在我们社区的支持下,

我们就计划向

世界各地的孩子们运送一百万台显微镜。

那有什么作用?

它在世界各地创建了一个鼓舞人心的社区

从肯尼亚到坎帕拉,
从加德满都到堪萨斯,人们互相学习和教学。

我喜欢这个的非凡的事情之一

就是社区意识。

尼加拉瓜有一个孩子

教别人如何通过在显微镜下观察幼虫来
识别携带登革热的蚊子种类

有一位药理
学家想出了一种

在任何地方检测假药的新方法。

有一个女孩想知道:

“闪光实际上是如何工作的?”

并发现了
闪光中晶体形成的物理学。

有一位阿根廷医生

正在尝试
使用此工具进行现场宫颈癌筛查。

你真的发现
了一种跳蚤

,它在我脚后跟的
一厘米深的地方挖了出来。

现在,您可能
会将这些视为异常情况。

但是有一种方法可以解决这种疯狂。

我称之为“节俭的科学”——

分享科学经验的想法,

而不仅仅是信息。

提醒您:

这个星球上有十亿

人完全
没有基础设施:

没有道路,

没有电力

,因此没有医疗保健。

此外,
这个星球上有十亿儿童生活在贫困之中。

我们应该如何为

下一代解决方案制造者激发他们的灵感?

我们有卫生保健工作者

参与抗击传染病,

用绝对
最低限度的工具和资源保护我们。

因此,作为斯坦福大学的一个实验室,

我从节俭的科学背景和为这些社区构建解决方案的背景下想到了这一点

我们经常考虑能够
在离网的树下进行诊断。 今天

我会告诉你两个
新工具的例子。

其中一个始于乌干达。

2013 年,

在一次使用 Foldscopes 检测血吸虫病的实地考察中

我做了一个小观察。

在一个偏远地区的诊所里,

我看到一台离心机
被用作门挡。

我的意思是——从字面上看,门挡。

我问他们,他们说,

“哦,我们实际上没有电,

所以这块垃圾
就像一个门挡一样好。”

对于一些
不知道的人来说

,离心机是
能够进行样品处理的最佳工具。

您分离
血液或体液的成分,

以便能够检测
和识别病原体。

但离心机体积庞大、价格昂贵——

大约需要 1,000 美元——

而且很难在现场实施。

当然,

如果没有电源,它们就无法工作。

听起来有点熟?

所以我们开始
考虑解决这个问题

,我回来了——

一直在想玩具。

现在……

我在这里有一些。

我一开始是玩溜溜球的

……我是个糟糕的溜溜球运动员。

因为这些物体旋转,

我们想知道

,我们真的可以
利用这些物体的物理特性

来制造离心机吗?

这可能是我能做的最糟糕的一次
投掷。

但是你可能会开始意识到,

如果你开始探索
玩具的空间——

我们尝试了这些陀螺,

然后在实验室里,

我们偶然发现了这个奇迹。

这是旋风,
或蜂鸣器,或运行。

几根弦和一个小圆盘

,如果我推动它,它就会旋转。

有多少人
小时候玩过这个?

这称为字符串上的按钮。

好吧,也许你们中的 50%。

你没有意识到——

这个小物件

是人类历史上最古老的玩具……

5000 年前。

我们在我们的星球上发现了这个物体的遗迹

现在具有讽刺意味的是,

我们实际上不明白
这个小东西是如何工作的。

那是我兴奋的时候。

所以我们回去工作,

写下几个方程式。

如果你输入你输入的扭矩

你把这个圆盘上的阻力,

以及这些弦上的扭转阻力,

你应该能够
在数学上解决这个问题。

这不是我演讲中唯一的方程式。

十页数学之后,

我们实际上可以写下

这个动态系统的完整解析解。

出现了我们所说的“Paperfuge”。

那是我的博士后 Saad Bhamla,

他是 Paperfuge 的共同发明者。

在左侧,您可以

看到我们正在尝试更换的所有离心机。

你在这里看到的这个小物件

是一个圆盘、
几根弦和一个把手。

当我旋转

并推动时,

它开始旋转。

现在,当您意识到,

当您进行数学

计算时,当我们计算该对象的转速时,从

数学上讲,我们应该
能够一直达到一百万转。

现在,
人体解剖学有点扭曲,

因为
这个物体的共振频率大约是 10 赫兹

,如果你曾经弹过钢琴,

你不能
超过 2 或 3 赫兹。

我们
通过这个对象能够达到的最大

速度不是 10,000 rpm,

也不是 50,000 rpm——

120,000 rpm。

这等于 30,000 重力。

如果我把你粘在这里
并让它旋转,

你会考虑
你会经历的力量类型。

像这样的工具的一个因素

是能够用它进行诊断。

所以,我要在
这里做一个快速演示,在

这个时候——我
要在手指上戳一点点,

然后一
滴血就会流出来。

如果你不喜欢血,
你不必看它。

这是一个小柳叶刀。

这些柳叶刀随处可见,

完全被动。

如果我今天吃过早餐……

那一点也不疼。

好的,我
用一滴血取一点毛细血管——

现在这滴血有答案了,

这就是我对它感兴趣的原因。

它实际上可能会告诉我
我现在是否患有疟疾。

我取了一点毛细血管

,你会看到它开始吸进。

我要再抽一点血。

这对现在来说已经足够了。

现在,我只是
把它放在粘土里密封这个毛细管。

现在已经密封了样本。

我们将采集样本,

将其安装在 Paperfuge 上。

一小块胶带
来制作一个密封的空腔。

所以现在样本是完全封闭的。

我们已经准备好试一试了。

我用这个物体推拉。

我要加载这个

……你会看到物体开始旋转。

与普通离心机不同,

这是一种反向旋转离心机。

它来回来回,来回

……现在我正在为它充电

,你会看到它建立了动力。

现在——我不
知道你能不能听到这个——

30 秒

,我应该能够
用血浆分离所有的血细胞。

还有这些血
细胞与血浆的比例——

(掌声)

已经,如果你看到这里,

如果你专注于这个,

你应该能够
看到分开

的血液和血浆。

这个比例实际上告诉我
我是否会贫血。

其中一个方面是,
我们构建了多种类型的 Paperfuges。

这个允许我们

通过运行一段时间

来识别疟原虫,我们可以识别
血液

中的疟原虫,我们可以分离出来并
用离心机之类的东西检测。

另一个版本允许
我分离核酸,

以便能够在现场进行核酸测试

这是另一个版本,它允许
我分离大量样本,

然后,最后

,我们一直在努力实现新的东西,

以便能够
在这样的对象上实现整个多重测试。

因此,您可以
在同一个对象中进行样品制备和化学反应。

现在……

这一切都很好,

但是当你开始考虑这个时,

你必须与人们分享这些工具。

我们做的一件事是——
我们刚从马达加斯加回来;

这就是疟疾临床试验
的样子——

(笑声)

你可以边喝咖啡边做。

但最重要的是,

这是一个距离任何道路六个小时的村庄。

我们与社区的一名高级
成员

和一名卫生保健工作者在一个房间里。

真正
让我兴奋的是这部分工作——

那个微笑,

能够与世界各地的人们分享简单但强大的
工具。

现在,我忘了告诉你

,所有这些都花了我 20 美分来制作。

好的,在我离开的时候,

我会告诉你最近的——

(笑声)

我们实验室的发明。

它被称为Abuzz——

你们所有人都
可以帮助我们对抗蚊子的想法;

你们都可以帮助我们追踪我们的敌人。

这些是敌人,因为它们会导致
疟疾、寨卡病毒、基孔肯雅热和登革热。

但挑战在于我们实际上
不知道我们的敌人在哪里。

没有蚊子所在的世界地图。

所以我们开始思考这个问题。

蚊子有 3,500 种

,它们都非常相似。

其中一些是如此相同

,以至于即使是昆虫学家也无法
在显微镜下识别它们。

但他们有一个致命弱点。

这就是蚊子
互相调情的样子。

那是男追女。

他们实际上是在
用他们的翼拍频率互相交谈。

(嗡嗡声

)因此,他们有一个签名。

我们意识到,使用普通手机

,5-10 美元的翻盖手机——有

多少人记得这个物体是什么?

(笑声)

我们可以记录
蚊子的这些声学特征。

我会告诉你具体如何做到这一点。

我在外面抓了一些蚊子。

与比尔 [盖茨] 不同,我
不会释放他们。

(笑声)

但我会告诉你
如何记录。

你所做的就是点击它们,它们就会飞起来。

你可以先测试

一下——我真的能听到。

然后你带上你的手机,
它有麦克风——

事实证明,麦克风
已经非常好,

即使在普通手机上

,你也可以拾取
这个近场签名。

既然我没时间了,

就让我播放
我一天前录制的录音。

(蚊子嗡嗡声)


是你之前听到的

所有你都喜欢的迷人声音。

其中一个背景

是,能够用普通手机做到这一点

可以让我们绘制蚊子物种的地图。

我们使用翻盖

手机绘制了最大的声学数据库之一,其中

包含 25 到 20 种
携带人类病原体的蚊子。

通过这个和机器学习,

任何上传这些数据的人,

我们都可以识别并判断你实际使用

的蚊子种类的概率

我们称之为 Abuzz
,如果你们中的任何人想注册,

只需访问网站即可。

让我

以我心中非常重要和珍贵的事情结束。

今天的挑战之一
是我们有可怕的问题。

我们有十亿
人完全没有医疗保健,

气候变化,生物多样性丧失,

等等。

我们希望
科学能够提供答案。

但在你今天离开这个剧院之前,

我要你保证一件事。

我们要让科学变得容易——

不仅是那些负担得起的人,

还有十亿其他买不起的人。

让我们让科学和科学
素养成为一项人权。

当您将发现的刺痛感传递

给另一个孩子时,

您就可以让他们
成为下一批

真正解决这些问题的人。

谢谢你。

(掌声)