Sarah Rugheimer The search for microscopic aliens TED Fellows

[SHAPE YOUR FUTURE]

I want to find aliens.

Finding life on another planet
is not just going to be a little hard,

it’s going to be very hard.

But for the first time in human history,

we have a chance to detect
signs of life on another planet.

Or maybe we’ve already
detected it on Venus.

Or maybe not.

There are still two big hurdles

when it comes to confirming life
on another world.

The first is building a telescope
big enough to do this,

and the second is interpreting
what we will find.

When we think of extraterrestrial life,

we tend to think of aliens like
funny little green men,

not aliens as single-celled microbes.

But it’s actually detecting signs
of microbial life on another planet

that I’m most optimistic about,
and what I focus my research on.

I model how a star’s high-energy radiation

can make gases from microbes
harder or easier to see

with future telescopes.

Microbes have dominated our planet’s
biosphere for most of Earth’s history.

They’ve been emitting gases
that can be seen in our atmosphere –

even light years away –

for billions of years.

Now, if an alien astronomer
were looking at Earth,

they would probably detect gases
like oxygen, methane and nitrous oxide

before detecting signs of us.

Even with an active
biosphere like Earth’s,

most of the gases that indicate life
are coming from single-celled microbes,

not from animals.

This is what we’ll try to do
in the next decade of astronomy –

try to find signs of microbial life
on planets orbiting other stars.

But the technology to detect
the atmosphere

of a planet the size of Earth

around another sun

is incredibly difficult.

It’s like trying to determine the size
of a firefly in front of a spotlight

while looking from another continent.

What’s amazing is that
with telescopes in the 2020s,

we’re overcoming
this technological barrier.

The second issue defining alien life

will be to interpret what these
biosignature gases actually mean.

Twenty-one percent of our
atmosphere is oxygen,

and nearly all of that oxygen
comes from life.

So here’s the tricky question:

Would detecting oxygen
on another planet mean life?

No, not necessarily,

because we know of ways
to get oxygen without biology.

I try to understand a planet’s geology
and its star’s radiation

so that we can better identify
a true life signal.

And this is what makes the preliminary
detection on Venus of phosphine,

a potential biosignature gas,

so compelling but also so confusing.

Venus is not where
we expected to find life.

It is a hellish world,

with a surface temperature
of nearly 900 degrees Fahrenheit.

Could life be floating in the more
temperate upper atmosphere?

But then how would such life
eat and reproduce?

This discovery will have to be vetted
over the coming decade.

First, we must verify the detection
of phosphine itself,

and then later, we would have to confirm
that this gas is coming from life

and not from some unexpected
geological or photochemical process.

If true, this would be one of the most
profound discoveries of our generation.

If it turns out that we were fooled,

that we mistook this gas for biology
when it’s from some other process,

we will have a sobering lesson to apply
to planets orbiting distant stars.

Venus is close – literally,
our next-door neighbor –

and yet we still have trouble
understanding it.

The planets we’re finding
orbiting other stars

are weird and unexpected.

Some have the density of cotton candy,

and others rain molten iron.

And most stars are different from our sun,

with high-energy flares
that can make it difficult for life.

So the more we’re looking at
different biosignature gases,

the more we realize
that there’s no single gas

that’s enough to understand a planet
and to claim alien life.

It is just really difficult
to distinguish life from nonlife

from light years away.

And here’s where the ambiguity lies.

How will we know if a clue
is a sign of life or is not?

Well, first, we’ll need
to understand as much as we can

about a planet’s geology
and the star it orbits.

We’ll learn vital lessons
by exploring our own solar system

in places such as Venus and Mars.

We’re getting closer to answering
one of humanity’s biggest questions:

Are we alone in the universe?

Any claim will be hotly debated.

So basically, I’m stretched
between two desires.

I want to find alien life, but likely
will not have a clear answer.

And that’s OK; science is nuanced
and self-correcting.

It’s what I love about it.

Science is about balancing this duality
of skepticism and of hope.

We won’t be able to teleport
ourselves to another planet

and take pictures of alien
kangaroos jumping around.

And without an intelligent
“Hello, Earthlings!” signal,

we might still feel lonely,

even if we find out
we’re not alone in the universe.

Despite these challenges,
I’m super excited about alien microbes

and what they could teach us.

Even if we find just one
other sign of life,

then likely the universe
is teeming with it,

from single-celled to complex.

If we search for decades and find nothing,

then that is equally humbling.

But we must try.

We must do this search even when it means
sitting with uncertainty along the way.

Thank you.

[塑造你的未来]

我想找到外星人。

在另一个星球上寻找生命
不仅会有点困难,

而且会非常困难。

但在人类历史上,我们第一次

有机会探测
到另一个星球上的生命迹象。

或者,也许我们已经
在金星上发现了它。

或者可能不是。

在确认另一个世界的生命方面仍然存在两大障碍

第一个是建造一个
足够大的望远镜来做到这一点

,第二个是解释
我们会发现什么。

当我们想到外星生命时,

我们倾向于认为外星人是
有趣的小绿人,

而不是单细胞微生物。

但它实际上是
在我最乐观的另一个星球上检测微生物生命的迹象


以及我的研究重点。

我模拟了恒星的高能辐射

如何使未来的望远镜
更难或更容易

看到来自微生物的气体。

在地球历史的大部分时间里,微生物一直主宰着我们星球的生物圈。 数十亿年来,

它们一直在释放
我们大气中可以看到的气体

——甚至是光年以外的气体

现在,如果外星天文学家
正在观察地球,

他们可能会在探测到我们的迹象之前探测到
氧气、甲烷和一氧化二氮等气体

即使
像地球这样活跃的生物圈,

大多数表明生命的气体
来自单细胞微生物,

而不是动物。

这就是我们将
在未来十年的天文学中尝试做的事情——

尝试
在围绕其他恒星运行的行星上寻找微生物生命的迹象。

但是,要探测

一个地球大小的行星

围绕另一个太阳的大气层的技术

是非常困难的。

这就像

从另一个大陆看时试图在聚光灯前确定萤火虫的大小。

令人惊奇的是,
借助 2020 年代的望远镜,

我们正在克服
这一技术障碍。

定义外星生命的第二个问题

将是解释这些
生物特征气体的实际含义。

我们大气的 21%
是氧气,

而几乎所有的氧气
都来自生命。

所以这是一个棘手的问题:

在另一个星球上检测到氧气是否意味着生命?

不,不一定,

因为我们知道在
没有生物学的情况下获取氧气的方法。

我试图了解一颗行星的地质
及其恒星的辐射,

以便我们能够更好地
识别真正的生命信号。

这就是为什么
在金星上初步检测到

一种潜在的生物特征气体磷化氢

如此引人注目但也如此令人困惑。

金星不是
我们期望找到生命的地方。

这是一个地狱般的世界

,地表
温度接近华氏900度。

生命会漂浮在更
温和的高层大气中吗?

但是,这样的生命将如何
进食和繁殖?

这一发现必须
在未来十年内得到审查。

首先,我们必须验证
磷化氢本身的检测,

然后,我们必须
确认这种气体来自生命,

而不是来自一些意想不到的
地质或光化学过程。

如果属实,这将是
我们这一代最深刻的发现之一。

如果事实证明我们被愚弄了,当它来自其他过程时

,我们将这种气体误认为是生物
,那么

我们将有一个发人深省的教训来
应用于围绕遥远恒星运行的行星。

金星很近——从字面上看,
我们的隔壁邻居

——但我们仍然
难以理解它。

我们发现的
围绕其他恒星运行的行星

既奇怪又出人意料。

有的有棉花糖的密度

,有的像铁水一样下雨。

而且大多数恒星都与我们的太阳不同,它们

的高能
耀斑会使生命难以生存。

因此,我们对
不同生物特征气体

的研究越多,我们就越
意识到没有一种

气体足以了解行星
并声称拥有外星生命。

从光年之外很难区分生命和非生命

这就是模棱两可的地方。

我们如何知道一条线索
是否是生命的迹象?

嗯,首先,我们需要
尽可能多地

了解行星的地质情况
和它绕行的恒星。

我们将
通过

在金星和火星等地探索我们自己的太阳系来学习重要的课程。

我们越来越接近
回答人类最大的问题之一:

我们在宇宙中是孤独的吗?

任何主张都会引起激烈争论。

所以基本上,我
在两个欲望之间捉襟见肘。

我想寻找外星生命,但很
可能没有明确的答案。

没关系; 科学是微妙的
和自我纠正的。

这就是我喜欢它的地方。

科学就是要平衡
怀疑和希望的双重性。

我们将无法将自己传送
到另一个星球

并拍摄外星
袋鼠跳跃的照片。

而且没有一个聪明的
“你好,地球人!” 信号,

我们可能仍然感到孤独,

即使我们发现
我们在宇宙中并不孤单。

尽管存在这些挑战,
但我对外星微生物

以及它们可以教给我们的东西感到非常兴奋。

即使我们只发现了另一种
生命迹象

,宇宙
也很可能充满了它,

从单细胞到复杂。

如果我们寻找了几十年却一无所获,

那同样是令人羞愧的。

但我们必须尝试。

我们必须进行这种搜索,即使这意味着
一路上充满不确定性。

谢谢你。