The fascinating physics of everyday life Helen Czerski

As you heard, I’m a physicist.

And I think the way we talk about physics
needs a little modification.

I am from just down the road here;
I don’t live here anymore.

But coming from round here means
that I have a northern nana,

my mum’s mom.

And Nana is very bright;
she hasn’t had much formal education,

but she’s sharp.

And when I was a second-year undergraduate
studying physics at Cambridge,

I remember spending an afternoon
at Nana’s house in Urmston

studying quantum mechanics.

And I had these folders
open in front of me

with this, you know,
hieroglyphics – let’s be honest.

And Nana came along,
and she looked at this folder,

and she said, “What’s that?”

I said, “It’s quantum mechanics, Nana.”

And I tried to explain something
about what was on the page.

It was to do with the nucleus
and Einstein A and B coefficients.

And Nana looked very impressed.

And then she said, “Oh.

What can you do when you know that?”

(Laughter)

“Don’t know, ma’am.”

(Laughter)

I think I said something about computers,

because it was all
I could think of at the time.

But you can broaden that question out,
because it’s a very good question –

“What can you do when you know that?”
when “that” is physics?

And I’ve come to realize that when
we talk about physics in society

and our sort of image of it,

we don’t include the things
that we can do when we know that.

Our perception of what physics is
needs a bit of a shift.

Not only does it need a bit of a shift,

but sharing this different perspective
matters for our society,

and I’m not just saying that
because I’m a physicist and I’m biased

and I think we’re the most
important people in the world.

Honest.

So, the image of physics – we’ve got
an image problem, let’s be honest –

it hasn’t moved on much from this.

This is a very famous photograph
that’s from the Solvay Conference in 1927.

This is when the great minds
of physics were grappling

with the nature of determinism

and what it means
only to have a probability

that a particle might be somewhere,

and whether any of it was real.

And it was all very difficult.

And you’ll notice they’re all
very stern-looking men in suits.

Marie Curie – I keep maybe saying,
“Marie Antoinette,”

which would be a turn-up for the books –

Marie Curie, third from the left
on the bottom there,

she was allowed in,
but had to dress like everybody else.

(Laughter)

So, this is what physics is like –
there’s all these kinds of hieroglyphics,

these are to do with waves and particles.

That is an artist’s impression
of two black holes colliding,

which makes it look
worth watching, to be honest.

I’m glad I didn’t have to write
the risk assessment

for whatever was going on there.

The point is: this is
the image of physics, right?

It’s weird and difficult,

done by slightly strange people
dressed in a slightly strange way.

It’s inaccessible, it’s somewhere else

and fundamentally, why should I care?

And the problem with that
is that I’m a physicist,

and I study this.

This – this is my job, right?

I study the interface
between the atmosphere and the ocean.

The atmosphere is massive,
the ocean is massive,

and the thin layer
that joins them together

is really important,

because that’s where things go
from one huge reservoir to the other.

You can see that the sea surface –
that was me who took this video –

the average height of those waves
by the way, was 10 meters.

So this is definitely physics
happening here –

there’s lots of things –
this is definitely physics.

And yet it’s not included
in our cultural perception of physics,

and that bothers me.

So what is included
in our cultural perception of physics?

Because I’m a physicist,
there has to be a graph, right?

That’s allowed.

We’ve got time along the bottom here,
from very fast things there,

to things that take a long time over here.

Small things at the bottom,
big things up there.

So, our current cultural image
of physics looks like this.

There’s quantum mechanics
down in that corner,

it’s very small, it’s very weird,

it happens very quickly,

and it’s a long way down
in the general …

on the scale of anything that matters
for everyday life.

And then there’s cosmology,
which is up there;

very large, very far away,

also very weird.

And if you go to some places

like black holes
in the beginning of the universe,

we know that these are frontiers
in physics, right?

There’s lots of work being done
to discover new physics

in these places.

But the thing is, you will notice
there’s a very large gap in the middle.

And in that gap, there are many things.

There are planets and toasts
and volcanoes and clouds

and clarinets and bubbles and dolphins

and all sorts of things
that make up our everyday life.

And these are also run by physics,
you’d be surprised –

there is physics in the middle,
it’s just that nobody talks about it.

And the thing about all of these
is that they all run

on a relatively small number
of physical laws,

things like Newton’s laws of motion,

thermodynamics,

some rotational dynamics.

The physics in the middle
applies over a huge range,

from very, very small things
to very, very big things.

You have to try very hard
to get outside of this.

And there is also a frontier
in research physics here,

it’s just that nobody talks about it.

This is the world of the complex.

When these laws work together,
they bring about

the beautiful, messy,
complex world we live in.

Fundamentally, this is the bit
that really matters to me

on an everyday basis.

And this is the bit
that we don’t talk about.

There’s plenty of physics
research going on here.

But because it doesn’t involve
pointing at stars,

people for some reason
think it’s not that.

Now, the cool thing about this
is that there are so many things

in this middle bit,

all following the same physical laws,

that we can see those laws at work

almost all the time around us.

I’ve got a little video here.

So the game is, one of these eggs is raw
and one of them has been boiled.

I want you to tell me which one is which.

Which one’s raw?

(Audience responds)

The one on the left – yes!

And even though you might not
have tried that, you all knew.

The reason for that is,
you set them spinning,

and when you stop the cooked egg,
the one that’s completely solid,

you stop the entire egg.

When you stop the other one,
you only stop the shell;

the liquid inside is still rotating
because nothing’s made it stop.

And then it pushes the shell round again,
so the egg starts to rotate again.

This is brilliant, right?

It’s a demonstration
of something in physics

that we call the law of conservation
of angular momentum,

which basically says
that if you set something spinning

about a fixed axis,

that it will keep spinning
unless you do something to stop it.

And that’s really fundamental
in how the universe works.

And it’s not just eggs that it applies to,

although it’s really useful
if you’re the sort of person –

and apparently, these people do exist –

who will boil eggs
and then put them back in the fridge.

Who does that? Don’t admit to it –
it’s OK. We won’t judge you.

But it’s also got much
broader applicabilities.

This is the Hubble Space Telescope.

The Hubble Ultra Deep Field,
which is a very tiny part of the sky.

Hubble has been floating
in free space for 25 years,

not touching anything.

And yet it can point
to a tiny region of sky.

For 11 and a half days,
it did it in sections,

accurately enough
to take amazing images like this.

So the question is:

How does something
that is not touching anything

know where it is?

The answer is that right in the middle
of it, it has something

that, to my great disappointment,
isn’t a raw egg,

but basically does the same job.

It’s got gyroscopes which are spinning,

and because of the law
of conservation of angular momentum,

they keep spinning
with the same axis, indefinitely.

Hubble kind of rotates around them,
and so it can orient itself.

So the same little physical law
we can play with in the kitchen and use,

also explains what makes possible
some of the most advanced technology

of our time.

So this is the fun bit of physics,
that you learn these patterns

and then you can apply them
again and again and again.

And it’s really rewarding
when you spot them in new places.

This is the fun of physics.

I have shown that egg video
to an audience full of businesspeople once

and they were all dressed up very smartly
and trying to impress their bosses.

And I was running out of time,
so I showed the egg video and then said,

“Well, you can work it out,
and ask me afterwards to check.”

Then I left the stage.

And I had, literally,

middle-aged grown men
tugging on my sleeve afterwards,

saying, “Is it this? Is it this?”

And when I said, “Yes.” They went, “Yes!”

(Laughter)

The joy that you get
from spotting these patterns

doesn’t go away when you’re an adult.

And that’s really important,

because physics is all about patterns,

and a small number of patterns
give you access

to almost all of the physics
in our everyday world.

The thing that’s best about this
is it involves playing with toys.

Things like the egg shouldn’t be dismissed
as the mundane little things

that we just give the kids to play with
on a Saturday afternoon

to keep them quiet.

This is the stuff
that actually really matters,

because this is the laws of the universe
and it applies to eggs

and toast falling butter-side down
and all sorts of other things,

just as much as it applies
to modern technology

and anything else
that’s going on in the world.

So I think we should play
with these patterns.

Basically, there are a small
number of concepts

that you can become familiar with
using things in your kitchen,

that are really useful
for life in the outside world.

If you want to learn about thermodynamics,
a duck is a good place to start,

for example, why their feet
don’t get cold.

Once you’ve got a bit
of thermodynamics with the duck,

you can also explain fridges.

Magnets that you can play with
in your kitchen

get you to wind turbines
and modern energy generation.

Raisins in [fizzy] lemonade, which is always
a good thing to play with.

If you’re at a boring party,
fish some raisins out of the bar snacks,

put them in some lemonade.

It’s got three consequences.

First thing is, it’s quite good
to watch; try it.

Secondly, it sends the boring people away.

Thirdly, it brings
the interesting people to you.

You win on all fronts.

And then there’s spin
and gas laws and viscosity.

There’s these little patterns,
and they’re right around us everywhere.

And it’s fundamentally democratic, right?

Everybody has access to the same physics;
you don’t need a big, posh lab.

When I wrote the book,
I had the chapter on spin.

I had written a bit
about toast falling butter-side down.

I gave the chapter to a friend of mine
who’s not a scientist,

for him to read and tell me
what he thought,

and he took the chapter away.

He was working overseas.

I got this text message back from him
a couple of weeks later,

and it said, “I’m at breakfast
in a posh hotel in Switzerland,

and I really want
to push toast off the table,

because I don’t believe what you wrote.”

And that was the good bit –
he doesn’t have to.

He can push the toast off the table
and try it for himself.

And so there’s two important things
to know about science:

the fundamental laws we’ve learned
through experience and experimentation,

work.

The day we drop an apple and it goes up,

then we’ll have a debate about gravity.

Up to that point,
we basically know how gravity works,

and we can learn the framework.

Then there’s the process
of experimentation:

having confidence in things,
trying things out,

critical thinking – how we move
science forward –

and you can learn both of those things

by playing with toys
in the everyday world.

And it’s really important,

because there’s all this talk
about technology,

we’ve heard talks about quantum computing

and all these mysterious, far-off things.

But fundamentally, we still live in bodies
that are about this size,

we still walk about,
sit on chairs that are about this size,

we still live in the physical world.

And being familiar with these concepts
means we’re not helpless.

And I think it’s really important
that we’re not helpless,

that society feels it can look at things,

because this isn’t
about knowing all the answers.

It’s about having the framework
so you can ask the right questions.

And by playing with these fundamental
little things in everyday life,

we gain the confidence
to ask the right questions.

So, there’s a bigger thing.

In answer to Nana’s question

about what can you do
when you know that –

because there’s lots of stuff
in the everyday world

that you can do when you know that,

especially if you’ve got
eggs in the fridge –

there’s a much deeper answer.

And so there’s all the fun
and the curiosity

that you could have playing with toys.

By the way – why should kids have
all the fun, right?

All of us can have fun playing with toys,

and we shouldn’t be embarrassed about it.

You can blame me, it’s fine.

So when it comes to reasons
for studying physics, for example,

here is the best reason I can think of:

I think that each of us has
three life-support systems.

We’ve got our own body, we’ve got a planet

and we’ve got our civilization.

Each of those is an independent
life-support system,

keeping us alive in its own way.

And they all run
on the fundamental physical laws

that you can learn in the kitchen
with eggs and teacups and lemonade,

and everything else you can play with.

This is the reason, for example,

why something like climate change
is such a serious problem,

because It’s two of these
life-support systems,

our planet and our civilization,

kind of butting up against each other;

they’re in conflict,
and we need to negotiate that boundary.

And the fundamental physical laws
that we can learn

that are the way
the world around us works,

are the tools at the basis of everything;

they’re the foundation.

There’s lots of things
to know about in life,

but knowing the foundations
is going to get you a long way.

And I think this, if you’re not interested
in having fun with physics

or anything like that – strange,
but apparently, these people exist –

you surely are interested
in keeping yourself alive

and in how our life-support systems work.

The framework for physics
is remarkably constant;

it’s the same in lots and lots
of things that we measure.

It’s not going to change anytime soon.

They might discover
some new quantum mechanics,

but apples right here
are still going to fall down.

So, the question is –

I get asked sometimes: How do you start?

What’s the place to start

if you’re interested in the physical
world, in not being helpless,

and in finding some toys to play with?

Here is my suggestion to you:

the place to start is that moment –
and adults do this –

you’re drifting along somewhere,

and you spot something
and your brain goes, “Oh, that’s weird.”

And then your consciousness goes,
“You’re an adult. Keep going.”

And that’s the point –
hold that thought –

that bit where your brain went,
“Oh, that’s a bit odd,”

because there’s something
there to play with,

and it’s worth you playing with it,

so that’s the place to start.

But if you don’t have
any of those little moments

on your way home from this event,

here are some things to start with.

Put raisins in [fizzy] lemonade;
highly entertaining.

Watch a coffee spill dry.

I know that sounds a little bit
like watching paint dry,

but it does do quite weird things;
it’s worth watching.

I’m an acquired taste at dinner parties
if there are teacups around.

There are so many things you can do
to play with teacups, it’s brilliant.

The most obvious one
is to get a teacup, get a spoon,

tap the teacup around the rim and listen,

and you will hear something strange.

And the other thing is,
push your toast off the table

because you can,
and you’ll learn stuff from it.

And if you’re feeling really ambitious,

try and push it off in such a way
that it doesn’t fall butter-side down,

which is possible.

The point of all of this is that,

first of all, we should all
play with toys.

We shouldn’t be afraid to investigate
the physical world for ourselves

with the tools around us,

because we all have access to them.

It matters, because if we want
to understand society,

if we want to be good citizens,

we need to understand the framework
on which everything else must be based.

Playing with toys is great.

Understanding how to keep
our life-support systems going is great.

But fundamentally, the thing
that we need to change

in the way that we talk about physics,

is we need to understand

that physics isn’t out there
with weird people

and strange hieroglyphics

for somebody else in a posh lab.

Physics is right here; it’s for us,
and we can all play with it.

Thank you very much.

(Applause)

正如你所听到的,我是一名物理学家。

我认为我们谈论物理学的方式
需要稍作修改。

我来自这里的路上;
我不再住在这里了。

但是从这里来
意味着我有一个北方的娜娜,

我妈妈的妈妈。

娜娜很聪明;
她没有受过太多正规教育,

但她很敏锐。

当我还是剑桥大学物理专业的二年级本科生
时,

我记得
在厄姆斯顿的娜娜家中度过了一个下午

学习量子力学。


在我面前打开

了这些文件夹,你知道,
象形文字——老实说。

娜娜走了过来
,她看着这个文件夹,

说:“那是什么?”

我说:“这是量子力学,娜娜。”

我试图解释
一下页面上的内容。

这与原子核
和爱因斯坦 A 和 B 系数有关。

娜娜看起来很感动。

然后她说:“哦。

你知道了还能做什么?”

(笑声)

“不知道,女士。”

(笑声)

我想我说了一些关于计算机的事情,

因为
当时我能想到的只有这些。

但是你可以扩大这个问题,
因为这是一个非常好的问题——

“当你知道了这一点后,你能做什么?”
当“那个”是物理学?

我开始意识到,当
我们谈论社会中的物理学

和我们对它的印象时,

我们并没有包括
我们知道这一点时可以做的事情。

我们对物理学是什么的看法
需要稍作转变。

它不仅需要一点转变,

而且分享这种不同的观点
对我们的社会很重要,

而且我并不是说
因为我是物理学家而且我有偏见,

而且我认为我们是最
重要的人 在世界上。

诚实的。

所以,物理学的形象——
说实话,我们遇到了一个形象问题——

它并没有因此而改变太多。

这是一张非常有名的照片
,来自 1927 年的索尔维会议。

当时物理学的伟大思想家
正在努力

解决决定论的本质,

以及
仅仅有

一个粒子可能在某个地方的概率意味着什么,

以及其中是否有任何粒子 是真实的。

这一切都非常困难。

你会注意到他们都是
穿着西装的非常严肃的男人。

居里夫人——我可能一直在说,
“玛丽·安托瓦内特”

,这将是书中的亮点——

居里夫人,底部左起第三个

她被允许进入,
但必须像其他人一样穿着 .

(笑声)

所以,这就是物理学的样子——
有各种各样的象形文字,

这些都与波和粒子有关。 老实说,

这是艺术家
对两个黑洞碰撞的印象,

这让它看起来很
值得一看。

我很高兴我不必

为那里发生的任何事情编写风险评估。

关键是:这
是物理学的形象,对吧?

这很奇怪,也很困难,

由穿着有点奇怪的稍微奇怪的人完成

它无法访问,它在其他地方

,从根本上说,我为什么要关心?

问题
是我是物理学家

,我研究这个。

这——这是我的工作,对吧?

我研究
大气和海洋之间的界面。

大气是巨大的
,海洋是巨大的,

将它们连接在一起

的薄层非常重要,

因为这是
从一个巨大的水库到另一个水库的地方。

你可以看到海面——
那是我拍这个视频的——

顺便说一下,这些海浪的平均高度是 10 米。

所以这绝对是
这里发生的物理学——

有很多事情——
这绝对是物理学。

然而它并没有包含
在我们对物理学的文化认知中

,这让我很困扰。

那么
,我们对物理学的文化认知中包括什么?

因为我是物理学家,
所以必须有图表,对吧?

这是允许的。

我们在这里有时间,
从那里非常快

的事情到这里需要很长时间的事情。

底部的小东西,上面的
大东西。

所以,我们目前
对物理学的文化形象是这样的。

在那个角落里有量子力学,

它非常小,非常奇怪,

它发生得非常快,

而且总的来说还有很长的路要走
……

在日常生活中任何重要的事情
上。

然后是宇宙学
,它就在那里;

很大,很远,

也很诡异。

如果你去一些地方,

比如
宇宙开始的黑洞,

我们知道这些
是物理学的前沿,对吧?

为了在这些地方发现新的物理学

,有很多工作要做。

但问题是,你会注意到
中间有一个很大的间隙。

而在那个间隙里,有很多东西。

有行星、烤面包
、火山、云

、单簧管、气泡和海豚,

以及
构成我们日常生活的各种事物。

而且这些也是由物理运行的,
你会感到惊讶——

中间有物理
,只是没有人谈论它。

而关于所有这些的事情
是,它们

都遵循相对较少
的物理定律

,比如牛顿运动

定律、热力学、

一些旋转动力学。

中间的物理学
适用于很大的范围,

从非常非常小的事物
到非常非常大的事物。

你必须非常努力
地摆脱这一点。

而且这里也有
研究物理学的前沿

,只是没人谈论而已。

这是复杂的世界。

当这些定律共同作用时,
它们会带来我们生活

的美丽、混乱、
复杂的世界。

从根本上说,这
对我来说是日常生活中真正重要的一点


是我们不谈论的一点。

这里有大量的物理
研究。

但是因为它不涉及
指向星星,

人们出于某种原因
认为不是那样的。

现在,这很酷的一点
是,

在这个中间部分有很多东西,

都遵循相同的物理定律

,我们几乎可以在我们周围看到这些定律在起作用

我这里有一个小视频。

所以游戏是,其中一个鸡蛋是生的
,其中一个是煮过的。

我想让你告诉我哪个是哪个。

哪个是生的?

众答)左边那个——是的!

即使你可能
没有尝试过,你们都知道。

这样做的原因是,
你让它们旋转

,当你停止煮熟的鸡蛋
,即完全凝固

的鸡蛋时,你停止了整个鸡蛋。

当你停止另一个时,
你只会停止 shell;

里面的液体还在旋转,
因为没有任何东西让它停下来。

然后它再次推动
蛋壳转动,因此鸡蛋再次开始旋转。

这太棒了,对吧?

这是物理学

中我们称之为
角动量守恒定律的演示,

它基本上是说
,如果你设置一个围绕固定轴旋转的东西

,它会继续旋转,
除非你做一些事情来阻止它。


对于宇宙如何运作非常重要。

它不仅适用于鸡蛋,

尽管
如果你是那种人

  • 显然,这些人确实存在

  • 会煮鸡蛋
    然后把它们放回冰箱,它真的很有用。

谁这样做? 不要承认——
没关系。 我们不会评判你。

但它也有更
广泛的适用性。

这是哈勃太空望远镜。

哈勃超深场,
它是天空的一小部分。

哈勃已经
在自由空间漂浮了 25 年,

没有接触任何东西。

然而,它可以
指向天空的一小块区域。

在 11 天半的时间里,
它分段完成,

准确到足以
拍出像这样令人惊叹的图像。

所以问题是:

没有接触任何东西的东西

怎么知道它在哪里?

答案是在它的中间
,它有一些

东西,令我非常失望的
是,它不是生鸡蛋,

但基本上做同样的工作。

它有陀螺仪在旋转,

并且由于
角动量守恒定律,

它们
无限期地沿同一轴旋转。

哈勃有点绕它们旋转
,因此它可以自行定位。

因此,
我们可以在厨房中使用和使用的同样的小物理定律

也解释了是什么使
我们这个时代最先进的技术

成为可能。

所以这是物理学的有趣之处
,你学习了这些模式

,然后你可以
一次又一次地应用它们。

当您在新的地方发现它们时,这真的很有意义。

这就是物理学的乐趣。


曾经向满是商人的观众展示过那个鸡蛋视频

,他们都打扮得很漂亮
,试图给他们的老板留下深刻印象。

而我时间不多了,
所以我把彩蛋的视频给看了看,然后说,

“好吧,你可以算一下,
然后让我检查一下。”

然后我离开了舞台。 事后

我让

中年男人
拉着我的袖子

说:“是这个吗?是这个吗?”

当我说,“是的”。 他们说:“是的!”

(笑声) 当你成年后

,你发现这些模式所带来的快乐

并不会消失。

这真的很重要,

因为物理学全都与模式有关

,少数模式可以
让您访问我们日常生活

中几乎所有的
物理学。

最好的一点
是它涉及玩玩具。

像鸡蛋这样的东西不应该被
视为平凡的小东西

,我们只是让孩子们
在周六下午玩耍

以保持他们的安静。

这才是
真正重要的东西,

因为这是宇宙法则
,它适用于

黄油面朝下的鸡蛋和吐司
以及各种其他事物,

就像它适用
于现代技术

和其他任何事物
一样 在世界上。

所以我认为我们应该
使用这些模式。

基本上

,您可以熟悉
使用厨房中的物品的少数概念,这些概念

对外界的生活非常有用。

如果你想了解热力学
,鸭子是一个很好的起点,

例如,为什么它们的脚
不冷。

一旦你
对鸭子有了一点热力学,

你也可以解释冰箱。

您可以在厨房里玩的磁铁

让您使用风力涡轮机
和现代能源发电。

[汽水]柠檬水中的葡萄干,这总是
一件好事。

如果你在一个无聊的聚会上,
从酒吧小吃里捞一些葡萄干,

把它们放在柠檬水里。

它有三个后果。

首先,它很好
看; 试试看。

其次,它把无聊的人赶走了。

第三,它
把有趣的人带给你。

你在各个方面都赢了。

然后是自旋
和气体定律和粘度。

有这些小图案
,它们就在我们身边无处不在。

它从根本上说是民主的,对吧?

每个人都可以使用相同的物理;
你不需要一个大而豪华的实验室。

当我写这本书时,
我有关于旋转的章节。

我写了一些
关于吐司黄油面朝下的文章。

我把这一章给了我
的一个不是科学家的朋友,

让他阅读并告诉
我他的想法,

然后他把这章拿走了。

他在海外工作。 几周

后我收到了他发来的短信

,上面写着:“我
在瑞士一家豪华酒店吃早餐

,我真的很想
把吐司从桌子上推下来,

因为我不相信你说的 写的。”

这是好的一点——
他不必这样做。

他可以把吐司从桌子上推
下来,自己尝尝。

因此,关于科学有两件重要的事情
需要了解:

我们
通过经验和实验学到的基本定律,

工作。

哪一天我们掉下一个苹果,它就升起来了,

然后我们就会有一场关于重力的辩论。

到那时,
我们基本上知道重力是如何工作的

,我们可以学习框架。

然后
是实验的过程:

对事物充满信心,
尝试事物,

批判性思维——我们如何推动
科学向前发展

——你可以

通过
在日常生活中玩玩具来学习这两件事。

这真的很重要,

因为有很多
关于技术的

讨论,我们听说过关于量子计算

和所有这些神秘的、遥远的事情的讨论。

但从根本上说,我们仍然生活
在这种大小的身体中,

我们仍然行走,
坐在这种大小的椅子上,

我们仍然生活在物质世界中。

熟悉这些概念
意味着我们并非无助。

我认为重要的
是我们不要无助

,社会认为它可以看待事物,

因为这不是
要知道所有的答案。

这是关于拥有框架,
以便您可以提出正确的问题。

通过在日常生活中玩这些基本的
小事,

我们获得
了提出正确问题的信心。

所以,还有更大的事情。

在回答 Nana 的问题

时,当你知道这一点时你能做什么——

因为日常生活中有很多事情

你知道这一点时可以做,

特别是如果你
冰箱里有鸡蛋——

有一个更深层次的 回答。

因此

,您可以在玩玩具时获得所有乐趣和好奇心。

顺便说一句——为什么孩子们应该
玩得开心,对吧?

我们所有人都可以玩得开心

,我们不应该为此感到尴尬。

你可以怪我,没关系。

因此
,例如,当谈到学习物理的原因时,

这是我能想到的最好的理由:

我认为我们每个人都有
三个生命支持系统。

我们有自己的身体,我们有一个星球

,我们有我们的文明。

每一个都是一个独立的
生命支持系统,

让我们以自己的方式活着。

它们
都遵循基本的物理定律

,你可以在厨房里
用鸡蛋、茶杯和柠檬水,

以及你可以玩的所有东西来学习这些定律。

这就是

为什么像气候
变化这样的问题如此严重的

原因,因为这是
生命支持系统中的两个,

我们的星球和我们的文明,

有点相互对立;

他们处于冲突之中
,我们需要就边界进行谈判。

我们可以学习的基本物理定律

我们周围世界的运作方式,

是一切事物的基础工具;

他们是基础。

生活中有很多事情
要了解,

但了解
基础会让你走得很远。

我认为,如果你
对玩物理

或类似的东西不感兴趣——奇怪,
但显然,这些人是存在的——

你肯定
对保持自己的生命

以及我们的生命支持系统如何工作感兴趣。

物理学的框架
非常稳定。

我们测量的很多东西都是一样的。

它不会很快改变。

他们可能会发现
一些新的量子力学,

但这里的苹果
还是会掉下来。

所以,问题是——

我有时会被问到:你如何开始?

如果你对物质
世界感兴趣,不想无助

,想找些玩具玩,从哪里开始呢?

这是我给你的建议

:从那一刻开始
——成年人会这样做——

你在某个地方漂流

,你发现了一些东西
,你的大脑就会说,“哦,这很奇怪。”

然后你的意识开始说:
“你是成年人了。继续前进。”

这就是重点 -
保持这个想法 -

你的大脑会去的地方,
“哦,这有点奇怪,”

因为那里有一些
东西可以玩

,值得你玩,

所以这就是开始的地方。

但是,如果您

在从这次活动回家的路上没有任何这些小时刻,那么可以从

这里开始。

将葡萄干放入[汽水]柠檬水中;
非常有趣。

观察咖啡溢出干燥。

我知道这听起来有点
像看着油漆变干,

但它确实会做一些很奇怪的事情;
值得一看。

如果周围有茶杯,我会在晚宴上养成后天的品味。

你可以做很多事情
来玩茶杯,这太棒了。

最明显的
就是拿个茶杯,拿个勺子,

把茶杯的杯沿敲一下,听

,你会听到一些奇怪的东西。

另一件事是,
把你的吐司从桌子上推开,

因为你可以
,你会从中学到东西。

如果你真的很有野心,

试着把它推开
,让它不会倒下,

这是可能的。

所有这一切的重点是,

首先,我们都应该
玩玩具。

我们不应该害怕
使用我们周围的工具为自己探索物理世界

因为我们都可以使用它们。

这很重要,因为如果我们
想了解社会,

如果我们想成为好公民,

我们需要了解
其他一切都必须基于的框架。

玩玩具很棒。

了解如何保持
我们的生命支持系统运转非常棒。

但从根本上说
,我们需要改变

谈论物理学的方式,

是我们需要

了解物理学并不存在

于豪华实验室中的怪人和奇怪的象形文字中。

物理学就在这里; 这是给我们的
,我们都可以玩。

非常感谢你。

(掌声)