The life cycle of a neutron star David Lunney

About once every century,

a massive star somewhere in our galaxy

runs out of fuel.

This happens after millions of years
of heat and pressure

have fused the star’s hydrogen

into heavier elements like helium,
carbon, and nitrogen— all the way to iron.

No longer able to produce sufficient
energy to maintain its structure,

it collapses under its own gravitational
pressure and explodes in a supernova.

The star shoots most of its
innards into space,

seeding the galaxy with heavy elements.

But what this cataclysmic eruption leaves
behind might be even more remarkable:

a ball of matter so dense that
atomic electrons

collapse from their quantum orbits
into the depths of atomic nuclei.

The death of that star
is the birth of a neutron star:

one of the densest known objects
in the universe,

and a laboratory for the strange physics
of supercondensed matter.

But what is a neutron star?

Think of a compact ball inside of which
protons and electrons fuse into neutrons

and form a frictionless liquid
called a superfluid—

surrounded by a crust.

This material is incredibly dense –

the equivalent of the mass of a
fully-loaded container ship

squeezed into a human hair,

or the mass of Mount Everest
in a space of a sugar cube.

Deeper in the crust, the neutron
superfluid forms different phases

that physicists call “nuclear pasta,”

as it’s squeezed from lasagna
to spaghetti-like shapes.

The massive precursors to
neutron stars often spin.

When they collapse,

stars that are typically millions of
kilometers wide

compress down to neutron stars that are
only about 25 kilometers across.

But the original star’s angular
momentum is preserved.

So for the same reason that a figure
skater’s spin accelerates

when they bring in their arms,

the neutron star spins much more
rapidly than its parent.

The fastest neutron star on record
rotates over 700 times every second,

which means that a point on its surface
whirls through space

at more than a fifth
of the speed of light.

Neutron stars also have the strongest
magnetic field of any known object.

This magnetic concentration
forms vortexes

that radiate beams
from the magnetic poles.

Since the poles aren’t always aligned
with the rotational axis of the star,

the beams spin like lighthouse beacons,

which appear to blink
when viewed from Earth.

We call those pulsars.

The detection of one of these
tantalizing flashing signals

by astrophysicist Jocelyn Bell in 1967

was in fact the way we indirectly
discovered neutron stars

in the first place.

An aging neutron star’s furious rotation
slows over a period of billions of years

as it radiates away its energy in the form
of electromagnetic and gravity waves.

But not all neutron stars
disappear so quietly.

For example, we’ve observed binary systems

where a neutron star
co-orbits another star.

A neutron star can feed on
a lighter companion,

gorging on its more
loosely bound atmosphere

before eventually collapsing
cataclysmically into a black hole.

While many stars exist as binary systems,

only a small percentage of those end up
as neutron-star binaries,

where two neutron stars circle each other
in a waltz doomed to end as a merger.

When they finally collide, they send
gravity waves through space-time

like ripples from a stone
thrown into a calm lake.

Einstein’s theory of General Relativity

predicted this phenomenon over 100 years
ago, but it wasn’t directly verified

until 2017,

when gravitational-wave observatories
LIGO and VIRGO

observed a neutron star collision.

Other telescopes picked up a burst of
gamma rays and a flash of light,

and, later, x-rays and radio signals,
all from the same impact.

That became the most studied event
in the history of astronomy.

It yielded a treasure trove of data

that’s helped pin down the speed
of gravity,

bolster important theories
in astrophysics,

and provide evidence for the origin
of heavy elements like gold and platinum.

Neutron stars haven’t given up
all their secrets yet.

LIGO and VIRGO are being upgraded
to detect more collisions.

That’ll help us learn what else

the spectacular demise of these dense,
pulsating, spinning magnets

can tell us about the universe.

大约每个世纪一次

,我们银河系某处的一颗大质量恒星

耗尽燃料。

这是在数百万年
的高温和压力

将恒星的氢融合

成更重的元素(如氦、
碳和氮)之后发生的——一直到铁。

它不再能够产生足够的
能量来维持其结构,

它在自身的引力压力下坍塌
并在超新星中爆炸。

这颗恒星将其大部分
内脏射入太空,

为银河系播种重元素。

但这场灾难性的喷发留下的东西
可能更引人注目:

一个如此密集的物质球,以至于
原子电子

从它们的量子轨道坍塌
到原子核的深处。

那颗恒星的死亡
就是中子星的诞生:

它是宇宙中已知密度最大的物体
之一,

也是超凝聚物质奇异物理的实验室。

但什么是中子星?

想象一个紧凑的球,里面的
质子和电子融合成中子

,形成一种称为超流体的无摩擦液体——

被地壳包围。

这种材料的密度令人难以置信

——相当于
一艘满载的集装箱船

挤进一根头发中

的质量,或者
相当于一个方糖空间中珠穆朗玛峰的质量。

在地壳深处,中子
超流体形成不同的相

,物理学家称之为“核面食”,

因为它被从千层面挤压
成意大利面条状的形状。 中子星

的巨大前体
经常旋转。

当它们坍缩时

,通常有数百万
公里宽的

恒星会压缩成
只有约 25 公里宽的中子星。

但原始恒星的角
动量被保留了下来。

因此,出于同样的原因,花样滑冰
运动员

在举起手臂时会加速

旋转,这颗中子星的旋转
速度要比其母星快得多。

有记录以来最快的中子星
每秒旋转超过 700 次,

这意味着其表面上的一个点

以超过五分
之一的光速在太空中旋转。

中子星还拥有
任何已知物体中最强的磁场。

这种磁集中
形成了从磁极

辐射光束的涡流

由于两极并不总是
与恒星的旋转轴对齐

,因此光束像灯塔信标一样旋转,从地球上看

时似乎会闪烁

我们称这些脉冲星。 天体物理学家乔斯林·贝尔在 1967

年探测到其中一个
诱人的闪光信号

实际上是我们最初间接
发现中子星

的方式。

一颗老化的中子星
在数十亿年的时间里,

随着它以电磁波和重力波的形式辐射出它的能量,它的剧烈旋转会减慢

但并非所有的中子星都
如此悄然消失。

例如,我们观察到

中子星与另一颗恒星共同运行的双星系统。

中子星可以
以较轻的伴星为食,

吞噬其更
松散的大气层,

然后最终
灾难性地坍缩成一个黑洞。

虽然许多恒星以双星系统存在,但

只有一小部分最终
成为中子星双星,

其中两颗中子星
在华尔兹中相互环绕,注定以合并而告终。

当它们最终碰撞时,它们会
通过时空发送重力波,

就像扔进平静湖面的石头的涟漪一样

爱因斯坦的广义相对论

在 100 多年前就预言了这一现象
,但

直到 2017

年引力波天文台
LIGO 和 VIRGO

观测到中子星碰撞时才直接得到证实。

其他望远镜接收到一阵
伽马射线和一道闪光,

以及后来的 X 射线和无线电信号,
所有这些都来自同一次撞击。

这成为天文学史上研究最多的事件

它产生了一个数据宝库

,帮助确定了重力的速度

支持
了天体物理学的重要理论,

并为
黄金和铂等重元素的起源提供了证据。

中子星还没有放弃
所有的秘密。

LIGO 和 VIRGO 正在升级
以检测更多碰撞。

这将帮助我们了解

这些致密、
脉动、旋转磁铁的壮观消亡

还能告诉我们关于宇宙的什么。