The mysterious origins of life on Earth Luka Seamus Wright

Billions of years ago
on the young planet Earth

simple organic compounds assembled
into more complex coalitions

that could grow and reproduce.

They were the very first life on Earth,

and they gave rise to every one
of the billions of species

that have inhabited our planet since.

At the time, Earth was almost completely
devoid

of what we’d recognize as a suitable
environment for living things.

The young planet had widespread
volcanic activity

and an atmosphere that created
hostile conditions.

So where on Earth could life begin?

To begin the search for
the cradle of life,

it’s important to first understand the
basic necessities for any life form.

Elements and compounds essential to life
include hydrogen, methane, nitrogen,

carbon dioxide, phosphates, and ammonia.

In order for these ingredients to comingle
and react with each other,

they need a liquid solvent: water.

And in order to grow and reproduce,

all life needs a source of energy.

Life forms are divided into two camps:

autotrophs, like plants, that generate
their own energy,

and heterotrophs, like animals, that
consume other organisms for energy.

The first life form wouldn’t have had
other organisms to consume, of course,

so it must have been an autotroph,

generating energy either from the sun
or from chemical gradients.

So what locations meet these criteria?

Places on land or close to the surface
of the ocean

have the advantage of access to sunlight.

But at the time when life began,
the UV radiation on Earth’s surface

was likely too harsh for life
to survive there.

One setting offers protection
from this radiation

and an alternative energy source:

the hydrothermal vents that wind across
the ocean floor,

covered by kilometers of seawater
and bathed in complete darkness.

A hydrothermal vent is a fissure
in the Earth’s crust

where seawater seeps into magma
chambers

and is ejected back out
at high temperatures,

along with a rich slurry of minerals
and simple chemical compounds.

Energy is particularly concentrated

at the steep chemical gradients
of hydrothermal vents.

There’s another line of evidence
that points to hydrothermal vents:

the Last Universal Common Ancestor
of life, or LUCA for short.

LUCA wasn’t the first life form,
but it’s as far back as we can trace.

Even so, we don’t actually know what
LUCA looked like—

there’s no LUCA fossil, no modern-day
LUCA still around—

instead, scientists identified genes that
are commonly found in species

across all three domains
of life that exist today.

Since these genes are shared across
species and domains,

they must have been inherited from
a common ancestor.

These shared genes tell us that LUCA lived
in a hot, oxygen-free place

and harvested energy from a chemical
gradient—

like the ones at hydrothermal vents.

There are two kinds of hydrothermal vent:

black smokers and white smokers.

Black smokers release acidic,
carbon-dioxide-rich water,

heated to hundreds of degrees Celsius
and packed with sulphur, iron, copper,

and other metals essential to life.

But scientists now believe that black
smokers were too hot for LUCA—

so now the top candidates for the
cradle of life are white smokers.

Among the white smokers,

a field of hydrothermal vents on the
Mid-Atlantic Ridge called Lost City

has become the most favored candidate
for the cradle of life.

The seawater expelled here is highly
alkaline and lacks carbon dioxide,

but is rich in methane and offers
more hospitable temperatures.

Adjacent black smokers may have
contributed the carbon dioxide necessary

for life to evolve at Lost City,

giving it all the components to support
the first organisms

that radiated into the incredible
diversity of life on Earth today.

数十亿年前
,在年轻的地球上,

简单的有机化合物组装
成更复杂的联盟

,可以生长和繁殖。

它们是地球上最早的生命

,它们孕育

了从那时起居住在我们星球上的数十亿物种中的每一个。

当时,地球几乎完全

没有我们认为
适合生物生存的环境。

这颗年轻的星球有广泛的
火山活动

和创造
恶劣条件的大气层。

那么地球上的生命可以从哪里开始呢?

要开始寻找
生命的摇篮,

首先要
了解任何生命形式的基本必需品。

生命所必需的元素和化合物
包括氢、甲烷、氮、

二氧化碳、磷酸盐和氨。

为了使这些成分混合
并相互反应,

它们需要一种液体溶剂:水。

为了生长和繁殖,

所有生命都需要能量来源。

生命形式分为两个阵营:

自养生物,如植物,产生
自己的能量;

异养生物,如动物,
消耗其他生物体的能量。

当然,第一种生命形式不会
消耗其他生物体,

所以它一定是一种自养生物,

从太阳
或化学梯度中产生能量。

那么哪些地点符合这些标准呢?

陆地上或靠近
海洋表面的地方

具有获得阳光的优势。

但在生命开始的时候,
地球表面的紫外线辐射

可能过于强烈,以至于生命
无法在那里生存。

一种环境提供了
对这种辐射的保护

和另一种能源:

蜿蜒穿过海底的热液喷口,

被数公里长的海水覆盖
,沐浴在完全黑暗中。

热液喷口是
地壳中的裂缝

,海水渗入岩浆


在高温下喷出,

同时还有丰富的矿物浆液
和简单的化合物。

能量特别集中

在热液喷口的陡峭化学梯度
上。

还有另
一条指向热液喷口的证据:生命

的最后一个普遍共同
祖先,或简称 LUCA。

LUCA 不是第一个生命形式,
但它可以追溯到我们可以追溯到的最远的地方。

即便如此,我们实际上并不知道
LUCA 长什么样——

没有 LUCA 化石,也没有现代的
LUCA 存在——

相反,科学家们
发现了在

当今存在的所有三个生命领域的物种中常见的基因。

由于这些基因在物种和领域之间是共享的

它们一定是从
一个共同的祖先那里继承来的。

这些共享基因告诉我们,LUCA 生活
在一个炎热、无氧的地方,

并从化学梯度中获取能量——

就像热液喷口处的那些一样。

有两种热液喷口:

黑烟民和白烟民。

黑人吸烟者释放酸性、
富含二氧化碳的水,

加热到数百摄氏度,
并含有硫、铁、铜

和其他生命必需的金属。

但科学家们现在认为,黑人
吸烟者对 LUCA 来说太热了——

所以现在最适合
生命摇篮的人是白人吸烟者。

在白人吸烟者中,

位于
大西洋中脊的一处名为“失落之城”的热液喷口区

成为了最受青睐
的生命摇篮。

这里排出的海水
呈碱性,不含二氧化碳,

但富含甲烷
,温度适宜。

相邻的黑人吸烟者可能
贡献

了失落之城生命进化所必需的二氧化碳,

为它提供了支持
第一批

辐射到
当今地球上令人难以置信的生命多样性的有机体的所有成分。