Pizza physics New Yorkstyle Colm Kelleher

Transcriber: Andrea McDonough
Reviewer: Bedirhan Cinar

Pretty much everyone loves eating pizza,

but it can be a messy business.

Pizza is soft and bendable.

So how can you stop
all that cheese from falling off?

You might know some tricks:

you can use two hands –
not so classy,

or you can use a paper plate

and allow only the tip
of the pizza to peek out.

There’s one other trick, though:

holding the crust, you can sort
of fold the slice down the middle.

Now the tip of the pizza
isn’t falling over,

and you can eat it without getting
tomato sauce all over yourself

or accidentally biting off
some of that paper plate.

But why should the tip stay up
just because you bent the crust?

To understand this,
you need to know two things:

a little bit about the math
of curved shapes

and a little about the physics
of thin sheets.

First, the math.

Suppose I have a flat sheet
made out of rubber.

It’s really thin and bendable,
so it’s easy to roll into a cylinder.

I don’t need to stretch
the sheet at all, just bend it.

This property where one shape
can be transformed into another

without stretching or crumpling,
is called isometry.

A mathematician would say that a flat
sheet is isometric to a cylinder.

But not all shapes are isometric.

If I try to turn my flat sheet
into part of a sphere,

there’s no way I can do it.

You can check this for yourself,

by trying to fit a flat sheet
of paper onto a soccer ball

without stretching or crumpling the paper.

It’s just not possible.

So a mathematician would say

that a flat sheet and a sphere
aren’t isometric.

There’s one more familiar
shape that isn’t isometric

to any of the shapes we’ve seen
so far: a potato chip.

Potato chip shapes
aren’t isometric to flat sheets.

If you want to get a flat piece of rubber
into the shape of a potato chip,

you need to stretch it –
not just bend it, but stretch it as well.

So, that’s the math.

Not so hard, right?

Now for the physics.

It can be summed up in one sentence:

Thin sheets are easy to bend
but hard to stretch.

This is really important.

Thin sheets are easy to bend
but hard to stretch.

Remember when we rolled
our flat sheet of rubber into a cylinder?

That wasn’t hard, right?

But imagine how hard
you’d have pull on the sheet

to increase its area by 10 percent.

It would be pretty difficult.

The point is that bending a thin sheet

takes a relatively small amount of force,

but stretching or crumbling
a thin sheet is much harder.

Now, finally, we get to talk about pizza.

Suppose you go down to the pizzeria
and buy yourself a slice.

You pick it up from the crust,
first, without doing the fold.

Because of gravity,
the slice bends downwards.

Pizza is pretty thin, after all,

and we know that thin sheets
are easy to bend.

You can’t get it in your mouth,

cheese and tomato sauce dripping
everywhere – it’s a big mess.

So you fold the crust.

When you do, you force the pizza
into something like a taco shape.

That’s not hard to do –
after all, this shape is isometric

to the original pizza, which was flat.

But imagine what would happen
if the pizza were to droop down

while you’re bending it.

Now it looks like a droopy taco.

And what does a droopy taco
look like? A potato chip!

But we know that potato chips are not
isometric to flat pieces of rubber

or flat pizzas,

and that means that in order
to get into the shape it’s in now,

the slice of pizza had to stretch.

Since the pizza is thin,
this takes a lot of force,

compared to the amount of force it takes

to bend the pizza in the first place.

So, what’s the conclusion?

When you fold the pizza at the crust,

you make it into a shape where a lot
of force is needed to bend the tip down.

Often gravity isn’t strong enough
to provide this force.

That was kind of a lot of information,

so let’s do a quick backwards recap.

When pizza is folded at the crust,

gravity isn’t strong enough
to bend the tip.

Why? Because stretching a pizza is hard.

And to bend the tip downwards,
the pizza would have to stretch,

because the shape the pizza would be in,

the droopy taco shape,

isn’t isometric
to the original flat pizza.

Why? Because of math.

As the pizza example shows,
we can learn a lot

by looking at the mathematical properties
of different shapes.

And it’s especially nice when those shapes
happen to be pizza slices.

抄写员:Andrea McDonough
审稿人:Bedirhan Cinar

几乎每个人都喜欢吃披萨,

但这可能是一件麻烦事。

比萨柔软且可弯曲。

那么你怎么能阻止
所有的奶酪掉下来呢?

你可能知道一些技巧:

你可以用两只手——
不那么优雅,

或者你可以用一个纸盘子

,只让
比萨饼的尖端露出来。

不过,还有另一个技巧:

握住外壳,您可以
将切片从中间折叠起来。

现在比萨的尖端
没有掉下来

,你可以吃它而不会把
番茄酱弄到自己

身上或不小心咬掉
一些纸盘。

但是,为什么
仅仅因为你弯曲了地壳,小费就应该竖起来呢?

要理解这一点,
您需要了解两件事

:一点关于弯曲形状的数学知识

和一点关于薄板的物理知识

首先,数学。

假设我有一张
由橡胶制成的平板。

它非常薄且可弯曲,
因此很容易卷成圆柱体。

我根本不需要
拉伸床单,只需弯曲它。

这种形状
可以在

不拉伸或皱缩的情况下转换成另一种形状的特性
称为等距。

数学家会说
平板与圆柱体等距。

但并非所有形状都是等距的。

如果我试图把我的平板
变成球体的一部分

,我就做不到。

您可以自己检查这一点

,尝试将一张平面
纸放在足球上

而不拉伸或弄皱纸张。

这是不可能的。

所以数学家会

说平板和
球体不是等距的。

还有一个更熟悉的
形状

与我们目前看到的任何形状都不等距
:薯片。

薯片
形状与平板不等距。

如果你想把一块扁平的橡胶
做成薯片的形状,

你需要拉伸它——
不仅仅是弯曲它,还要拉伸它。

所以,这就是数学。

没那么难,对吧?

现在讲物理。

可以用一句话来概括:

薄板易弯,
但难拉。

这真的很重要。

薄板易于弯曲
但难以拉伸。

还记得我们将
平板橡胶卷成圆柱体的时候吗?

那并不难,对吧?

但是想象一下

为了将其面积增加 10%,您需要多么努力地拉动纸张。

这将是相当困难的。

关键是弯曲薄板

需要相对较小的力,

但拉伸或
压碎薄板要困难得多。

现在,最后,我们来谈谈披萨。

假设你去
比萨店给自己买一片。 首先,

您从外壳中取出它
,而不进行折叠。

由于重力
,切片向下弯曲。

毕竟,比萨饼很薄,

而且我们知道薄薄的薄片
很容易弯曲。

你不能把它弄到嘴里,到处都是

奶酪和番茄酱
——真是一团糟。

所以你折叠地壳。

当你这样做时,你会迫使披萨
变成像炸玉米饼一样的形状。

这并不难——
毕竟,这个形状

与原来的披萨是等距的,原来是平的。

但是想象一下,
如果在你弯曲披萨的时候披萨掉下来会发生

什么。

现在它看起来像一个下垂的炸玉米饼。

下垂的炸玉米饼是
什么样的? 一个薯片!

但我们知道,薯片
与橡胶或扁平比萨的扁平片不是等距的

,这意味着
为了形成它现在的形状

,比萨片必须拉伸。

由于比萨饼很薄,与首先弯曲比萨饼

所需的力相比,这

需要很大的力。

那么,结论是什么?

当你把比萨饼的外皮折叠起来时,

你会把它做成一个
需要很大力量才能将尖端向下弯曲的形状。

通常重力
不足以提供这种力。

那是一种很多信息,

所以让我们快速回顾一下。

当比萨饼在外壳处折叠时,

重力
不足以弯曲尖端。

为什么? 因为拉伸披萨很难。

为了向下弯曲尖端
,比萨饼必须伸展,

因为比萨饼的形状

,下垂的墨西哥卷饼形状,

与原来的扁平比萨饼不是等距的。

为什么? 因为数学。

正如披萨示例所示,通过查看不同形状的数学属性,
我们可以学到很多东西

当这些形状
恰好是披萨片时,它尤其好。