How we can use light to see deep inside our bodies and brains Mary Lou Jepsen

People don’t realize

that red light and benign
near-infrared light

go right through your hand,
just like this.

This fact could enable better,
faster and cheaper health care.

Our translucence is key here.

I’m going to show you how we use
this key and a couple of other keys

to see deep inside our bodies and brains.

OK, so first up …

You see this laser pointer
and the spot it makes on my hand?

The light goes right through my hand –

if we could bring
the lights down, please –

as I’ve already shown.

But you can no longer see that laser spot.

You see my hand glow.

That’s because the light
spreads out, it scatters.

I need you to understand
what scattering is,

so I can show you how we get rid of it

and see deep inside our bodies and brains.

So, I’ve got a piece of chicken back here.

(Laughter)

It’s raw.

Putting on some gloves.

It’s got the same
optical properties as human flesh.

So, here’s the chicken …
putting it on the light.

Can you see, the light goes right through?

I also implanted a tumor in that chicken.

Can you see it?

Audience: Yes.

Mary Lou Jepsen: So this means,
using red light and infrared light,

we can see tumors in human flesh.

But there’s a catch.

When I throw another
piece of chicken on it,

the light still goes through,

but you can no longer see the tumor.

That’s because the light scatters.

So we have to do something
about the scatter

so we can see the tumor.

We have to de-scatter the light.

So …

A technology I spent
the early part of my career on

enables de-scattering.

It’s called holography.

And it won the Nobel Prize
in physics in the 70s,

because of the fantastic things
it enables you to do with light.

This is a hologram.

It captures all of the light,
all of the rays, all of the photons

at all of the positions
and all of the angles, simultaneously.

It’s amazing.

To see what we can do with holography …

You see these marbles?

Look at these marbles
bouncing off of the barriers,

as an analogy to light
being scattered by our bodies.

As the marbles get to the bottom
of the scattering maze,

they’re chaotic, they’re scattering
and bouncing everywhere.

If we record a hologram
at the bottom inside of the screen,

we can record the position and angle
of each marble exiting the maze.

And then we can bring in
marbles from below

and have the hologram direct each marble
to exactly the right position and angle,

such as they emerge in a line
at the top of the scatter matrix.

We’re going to do that with this.

This is optically similar to human brain.

I’m going to switch to green light now,

because green light is brighter
to your eyes than red or infrared,

and I really need you to see this.

So we’re going to put a hologram
in front of this brain

and make a stream of light come out of it.

Seems impossible but it isn’t.

This is the setup you’re going to see.

Green light.

Hologram here, green light going in,

that’s our brain.

And a stream of light comes out of it.

We just made a brain lase
of densely scattering tissue.

Seems impossible,
no one’s done this before,

you’re the first public audience
to ever see this.

(Applause)

What this means is
that we can focus deep into tissue.

Our translucency is the first key.

Holography enabling de-scattering
is the second key

to enable us to see deep inside
of our bodies and brains.

You’re probably thinking,

“Sounds good, but what about
skull and bones?

How are you going to see through the brain
without seeing through bone?”

Well, this is real human skull.

We ordered it at skullsunlimited.com.

(Laughter)

No kidding.

But we treat this skull with great respect
at our lab and here at TED.

And as you can see,

the red light goes right through it.

Goes through our bones.

So we can go through skull
and bones and flesh with just red light.

Gamma rays and X-rays do that, too,
but they cause tumors.

Red light is all around us.

So, using that, I’m going
to come back here

and show you something more useful
than making a brain lase.

We challenged ourselves to see how fine
we could focus through brain tissue.

Focusing through this brain,

it was such a fine focus,
we put a bare camera die in front of it.

And the bare camera die …

Could you turn down the spotlight?

OK, there it is.

Do you see that?

Each pixel is two-thousandths
of a millimeter wide.

Two microns.

That means that spot focus –
full width half max –

is six to eight microns.

To give you an idea of what that means:

that’s the diameter of the smallest neuron
in the human brain.

So that means we can focus
through skull and brain to a neuron.

No one has seen this before,
we’re doing this for the first time here.

It’s not impossible.

(Applause)

We made it work with our system,
so we’ve made a breakthrough.

(Laughter)

Just to give an idea – like,
that’s not just 50 marbles.

That’s billions, trillion of photons,

all falling in line as directed
by the hologram,

to ricochet through
densely scattering brain,

and emerge as a focus.

It’s pretty cool.

We’re excited about it.

This is an MRI machine.

It’s a few million dollars,
it fills a room,

many people have probably been in one.

I’ve spent a lot of time in one.

It has a focus of about a millimeter –

kind of chunky, compared to
what I just showed you.

A system based on our technology
could enable dramatically lower cost,

higher resolution

and smaller medical imaging.

So that’s what we’ve started to do.

My team and I have built a rig, a lab rig

to scan out tissue.

And here it is in action.

We wanted to see how good we could do.

We’ve built this over the last year.

And the result is,

we’re able to find tumors

in this sample –

70 millimeters deep,
the light going in here,

half a millimeter resolution,

and that’s the tumor it found.

You’re probably looking at this,

like, “Sounds good,
but that’s kind of a big system.

It’s smaller than
a honking-big MRI machine,

monster MRI machine,

but can you do something
to shrink it down?”

And the answer is:

of course.

We can replace each
big element in that system

with a smaller component –

a little integrated circuit,

a display chip the size
of a child’s fingernail.

A bit about my background:

I’ve spent the last two decades
inventing, prototype-developing

and then shipping billions of dollars
of consumer electronics –

with full custom chips –

on the hairy edge of optical physics.

So my team and I built the big lab rig

to perfect our architecture
and test the corner cases

and really fine-tune our chip designs,

before spending the millions of dollars
to fabricate each chip.

Our new chip inventions
slim down the system, speed it up

and enable rapid scanning
and de-scattering of light

to see deep into our bodies.

This is the third key to enable
better, faster and cheaper health care.

This is a mock-up of something
that can replace the functionality

of a multimillion-dollar MRI machine

into a consumer electronics price point,

that you could wear as a bandage,
line a ski hat, put inside a pillow.

That’s what we’re building.

(Applause)

Oh, thanks!

(Applause)

So you’re probably thinking,

“I get the light going through our bodies.

I even get the holography
de-scattering the light.

But how do we use these new
chip inventions, exactly,

to do the scanning?”

Well, we have a sound approach.

No, literally – we use sound.

Here, these three discs represent
the integrated circuits

that we’ve designed,

that massively reduce the size
of our current bulky system.

One of the spots, one of the chips,
emits a sonic ping,

and it focuses down,

and then we turn red light on.

And the red light that goes
through that sonic spot

changes color slightly,

much like the pitch
of the police car siren changes

as it speeds past you.

So.

There’s this other thing about holography
I haven’t told you yet,

that you need to know.

Only two beams of exactly the same color
can make a hologram.

So, that’s the orange light
that’s coming off of the sonic spot,

that’s changed color slightly,

and we create a glowing disc
of orange light

underneath a neighboring chip

and then record a hologram
on the camera chip.

Like so.

From that hologram, we can extract
information just about that sonic spot,

because we filter out
all of the red light.

Then, we can optionally
focus the light back down into the brain

to stimulate a neuron
or part of the brain.

And then we move on
to shift the sonic focus to another spot.

And that way, spot by spot,
we scan out the brain.

Our chips decode holograms

a bit like Rosalind Franklin decoded
this iconic image of X-ray diffraction

to reveal the structure of DNA
for the first time.

We’re doing that electronically
with our chips,

recording the image
and decoding the information,

in a millionth of a second.

We scan fast.

Our system may be extraordinary
at finding blood.

And that’s because blood absorbs
red light and infrared light.

Blood is red.

Here’s a beaker of blood.

I’m going to show you.

And here’s our laser,
going right through it.

It really is a laser,
you can see it on the – there it is.

In comparison to my pound of flesh,

where you can see
the light goes everywhere.

So let’s see that again, blood.

This is really key: blood absorbs light,

flesh scatters light.

This is significant,

because every tumor bigger
than a cubic millimeter or two

has five times the amount of blood
as normal flesh.

So with our system, you can imagine
detecting cancers early,

when intervention is easy,

or tracking the size of your tumor
as it grows or shrinks.

Our system also should be extraordinary
at finding out where blood isn’t,

like a clogged artery,

or the color change in blood

as it carries oxygen
versus not carrying oxygen,

which is a way to measure neural activity.

There’s a saying that “sunlight”
is the best disinfectant.

It’s literally true.

Researchers are killing pneumonia in lungs
by shining light deep inside of lungs.

Our system could enable this
noninvasively.

Let me give you three more examples
of what this technology can do.

One: stroke.

There’s two major kinds of stroke:

the one caused by clogs

and another caused by rupture.

If you can determine the type of stroke
within an hour or two,

you can give medication to massively
reduce the damage to the brain.

Get the drug wrong,

and the patient dies.

Today, that means access to an MRI scanner
within an hour or two of a stroke.

Tomorrow, with compact, portable,
inexpensive imaging,

every ambulance and every clinic
can decode the type of stroke

and get the right therapy on time.

(Applause)

Thanks.

Two:

two-thirds of humanity
lacks access to medical imaging.

Compact, portable, inexpensive
medical imaging can save countless lives.

And three:

brain-computer communication.

I’ve shown here onstage our system
focusing through skull and brain

to the diameter of the smallest neuron.

Using light and sound,
you can activate or inhibit neurons,

and simultaneously,
we can match spec by spec

the resolution of an fMRI scanner,

which measures oxygen use in the brain.

We do that by looking
at the color change in the blood,

rather than using a two-ton magnet.

So you can imagine
that with fMRI scanners today,

we can decode the imagined words,
images and dreams of those being scanned.

We’re working on a system
that puts all three of these capabilities

into the same system –

neural read and write
with light and sound,

while simultaneously
mapping oxygen use in the brain –

all together in a noninvasive portable

that can enable
brain-computer communication,

no implants, no surgery,
no optional brain surgery required.

This can do enormous good

for the two billion people
that suffer globally with brain disease.

(Applause)

People ask me how deep we can go.

And the answer is:
the whole body’s in reach.

But here’s another way to look at it.

(Laughter)

My whole head just lit up,
you want to see it again?

Audience: Yes!

(Laughter)

MLJ: This looks scary, but it’s not.

What’s truly scary
is not knowing about our bodies,

our brains and our diseases

so we can effectively treat them.

This technology can help.

Thank you.

(Applause)

Thank you.

(Applause)

人们没有

意识到红光和良性
近红外

光直接穿过你的手,
就像这样。

这一事实可以实现更好、
更快和更便宜的医疗保健。

我们的半透明是这里的关键。

我将向你展示我们如何使用
这把钥匙和其他几把钥匙

来深入了解我们的身体和大脑。

好的,那么首先……

你看到这个激光笔
和它在我手上留下的点了吗?

灯正好穿过我的手——

如果我们能
把灯关掉,请——

正如我已经展示过的。

但是你再也看不到那个激光点了。

你看到我的手在发光。

那是因为光
散开,它散射。

我需要你了解
什么是散射,

这样我才能向你展示我们如何摆脱它

并深入了解我们的身体和大脑。

所以,我这里有一块鸡。

(笑声)

这是生的。

戴上一些手套。


具有与人肉相同的光学特性。

所以,这是鸡……
把它放在灯上。

你能看到,光穿过了吗?

我还在那只鸡身上植入了一个肿瘤。

你能看见它吗?

观众:是的。

Mary Lou Jepsen:所以这意味着,
使用红光和红外光,

我们可以看到人肉中的肿瘤。

但有一个问题。

当我把另
一块鸡扔在上面时

,光线仍然可以通过,

但你再也看不到肿瘤了。

那是因为光会散射。

所以我们必须对散射做一些
事情,

这样我们才能看到肿瘤。

我们必须去散射光。

所以……

我在
职业生涯的早期阶段使用的一项技术

可以实现去散射。

它被称为全息术。


在 70 年代获得了诺贝尔物理学奖,

因为
它能让你用光做一些奇妙的事情。

这是一个全息图。

它同时捕获所有位置和所有角度的所有
光线、所有光线、所有光子

太奇妙了。

看看我们可以用全息术做什么……

你看到这些弹珠了吗?

看看这些
从障碍物上弹回的弹珠,

就像
我们的身体散射的光一样。

当弹珠到达
散射迷宫的底部时,

它们是混乱的,它们
四处散射和弹跳。

如果我们
在屏幕底部内侧记录一个全息图,

我们可以记录
每个弹珠离开迷宫的位置和角度。

然后我们可以
从下方引入弹珠,

并让全息图将每个弹珠引导
到正确的位置和角度,

例如它们在散射矩阵顶部以一条线出现

我们将用这个来做到这一点。

这在光学上类似于人脑。

我现在要切换到绿光,

因为
对你的眼睛来说,绿光比红光或红外线更亮

,我真的需要你看到这一点。

所以我们要
在这个大脑前面放一个全息图

,让它发出一束光。

似乎不可能,但事实并非如此。

这是您将要看到的设置。

绿灯。

这里的全息图,绿灯进入,

那是我们的大脑。

一道光流从其中射出。

我们刚刚制作
了密集散射组织的脑激光。

似乎不可能,
以前没有人这样做过,

你是第
一个看到这个的公众观众。

(掌声)


意味着我们可以深入组织。

我们的半透明性是第一个关键。

启用去散射的全息术

使我们能够看到
我们身体和大脑深处的第二个关键。

你可能在想,

“听起来不错,但是
头骨和骨头呢

?你怎么能看穿大脑
而不看穿骨头呢?”

嗯,这是真正的人类头骨。

我们在skullsunlimited.com 订购了它。

(笑声)

不开玩笑。


在我们的实验室和 TED,我们非常尊重这个头骨。

正如你所看到的

,红灯直接穿过它。

穿过我们的骨头。

所以我们可以
只用红光穿过头骨、骨头和肉。

伽马射线和 X 射线也能做到这一点,
但它们会导致肿瘤。

红灯就在我们身边。

因此,使用它,我将
回到这里

,向您展示
比制作大脑激光更有用的东西。

我们挑战自己,看看
我们可以通过脑组织聚焦到什么程度。

通过这个大脑进行对焦,

这是一个非常好的对焦,
我们在它面前放了一个裸机。

光秃秃的相机死了……

你能把聚光灯关掉吗?

好的,就是这样。

你看到了吗?

每个像素的
宽度为千分之二。

两微米。

这意味着点焦点——
全宽半最大值——

是六到八微米。

让您了解这意味着什么:

这是人脑中最小神经元的直径

所以这意味着我们可以
通过头骨和大脑聚焦到一个神经元。

以前没有人见过这个,
我们是第一次在这里这样做。

这并非不可能。

(鼓掌)

我们把它和我们的系统配合起来了,
所以我们取得了突破。

(笑声)

只是给出一个想法——比如,
这不仅仅是 50 颗弹珠。

那是数十亿,数万亿个光子,

全部
按照全息图的指示排列,


密集散射的大脑中弹跳,

并作为焦点出现。

它太酷了。

我们对此感到兴奋。

这是一台核磁共振机。

几百万美元,
它填满了一个房间,

可能很多人都住过。

我花了很多时间在一个。

它的焦点约为一毫米——


我刚刚向您展示的相比,有点厚实。

基于我们技术的系统
可以显着降低成本、

提高分辨率

和缩小医学成像。

这就是我们已经开始做的事情。

我和我的团队已经建立了一个设备,一个

用于扫描组织的实验室设备。

在这里,它正在发挥作用。

我们想看看我们能做得多好。

我们在去年建立了这个。

结果是,

我们能够

在这个样本中找到肿瘤——

70 毫米深
,光线进入这里,

分辨率为半毫米

,这就是它发现的肿瘤。

你可能在看这个,

比如,“听起来不错,
但这是一个很大的系统。


比鸣喇叭的大型 MRI 机器、

怪物 MRI 机器要小,

但你能做些什么
来缩小它吗?”

答案是

:当然。

我们可以用一个更小的组件来替换
该系统中的每个大元素

——

一个小的集成电路,

一个孩子指甲大小的显示芯片。

关于我的背景:

在过去的 20 年里,我一直在
发明、开发原型

,然后运送数十亿美元
的消费电子产品——

带有完全定制的芯片——

处于光学物理学的毛茸茸的边缘。

因此,我和我的团队建造了大型实验室设备

来完善我们的架构
并测试角落案例

并真正微调我们的芯片设计,

然后再花费数百万美元
来制造每个芯片。

我们的新芯片发明
使系统变薄、加速

并能够快速扫描
和去散射光

以深入观察我们的身体。

这是实现
更好、更快和更便宜的医疗保健的第三个关键。

这是一个模型
,可以将

价值数百万美元的 MRI 机器的功能替换

为消费电子产品的价格点

,你可以把它当作绷带穿,
给滑雪帽排线,放在枕头里。

这就是我们正在建设的。

(掌声)

哦,谢谢!

(掌声)

所以你可能在想,

“我让光穿过我们的身体。

我什至让全息术
去散射光。

但是我们如何使用这些新的
芯片发明,准确

地进行扫描?”

好吧,我们有一个合理的方法。

不,从字面上看——我们使用声音。

在这里,这三个圆盘代表

我们设计的集成电路,

它们极大地减小
了我们当前庞大系统的尺寸。

一个点,一个芯片,
发出声波

,它聚焦下来,

然后我们打开红灯。

穿过那个声波点的红光会

稍微改变颜色,

就像警车警报器的音调

随着它驶过你而改变一样。

所以。 我还

没有告诉你关于全息的另一件事

,你需要知道。

只有两束颜色完全相同的光束
才能形成全息图。

所以,这就是从声波点发出的橙色光

它的颜色略有变化

,我们在相邻芯片下方创建一个橙色光的发光圆盘

,然后
在相机芯片上记录全息图。

像这样。

从那个全息图中,我们可以提取
关于那个声波点的信息,

因为我们过滤掉了
所有的红光。

然后,我们可以选择
将光聚焦回大脑,

以刺激神经元
或大脑的一部分。

然后我们
继续将声音焦点转移到另一个位置。

这样,我们逐点
扫描大脑。

我们的芯片解码全息图

有点像 Rosalind Franklin 解码
这个标志性的 X 射线衍射图像

以首次揭示 DNA 的结构

我们正在
使用我们的芯片以电子方式在百万分之一秒内

记录图像
并解码信息

我们快速扫描。

我们的系统
在寻找血液方面可能非常出色。

那是因为血液会吸收
红光和红外光。

血是红色的。

这里有一烧杯血。

我要给你看。

这是我们的激光
,正穿过它。

它真的是一个激光,
你可以在上面看到它——它就在那里。

与我的一磅肉相比

,你可以看到
无处不在的光。

所以让我们再看一遍,血。

这真的很关键:血液吸收光线,

肉体散射光线。

这很重要,

因为每个
大于一两立方毫米的肿瘤

的血量
是正常肉的五倍。

因此,使用我们的系统,您可以想象

在易于干预的情况下及早发现癌症,

或者在
肿瘤生长或缩小时跟踪其大小。

我们的系统也应该非常
擅长找出血液不存在的地方,

比如动脉阻塞,

或者血液

中携带氧气
与不携带氧气时的颜色变化,

这是一种测量神经活动的方法。

有句话说“阳光”
是最好的消毒剂。

这是真的。

研究人员正在
通过向肺部深处照射光线来杀死肺部肺炎。

我们的系统可以无创地实现这一点

让我再举三个例子
来说明这项技术可以做什么。

一:中风。

有两种主要的中风

:一种是由堵塞引起的

,另一种是由破裂引起的。

如果你能
在一两个小时内确定中风的类型,

你就可以服用药物来大量
减少对大脑的损害。

药物弄错了

,病人就死了。

今天,这意味着
在中风后一两个小时内使用 MRI 扫描仪。

明天,通过紧凑、便携、
廉价的成像,

每辆救护车和每家诊所
都可以解码中风的类型

并按时获得正确的治疗。

(掌声)

谢谢。

二:

三分之二的人类
无法获得医学成像。

紧凑、便携、廉价的
医学成像可以挽救无数生命。

三:

脑机交流。

我在舞台上展示了我们的系统
通过头骨和大脑聚焦

到最小神经元的直径。

使用光和声音,
您可以激活或抑制神经元,

同时,
我们可以逐个匹配

fMRI 扫描仪的分辨率,该扫描仪

测量大脑中的氧气使用。

我们通过观察
血液中的颜色变化来做到这一点,

而不是使用两吨重的磁铁。

所以你可以想象
,今天使用 fMRI 扫描仪,

我们可以解码被扫描者的想象文字、
图像和梦境。

我们正在开发一个系统
,将所有这三种功能

整合到同一个系统中——

通过光和声音进行神经读写,

同时
映射大脑中的氧气使用情况——

所有这些都放在一个非侵入性的便携式设备中

,可以让
大脑—— 计算机通信,

无需植入物,无需手术,
无需可选的脑部手术。

这可以

为全球 20 亿
脑部疾病患者带来巨大的好处。

(掌声)

人们问我能走多远。

答案是
:整个身体都触手可及。

但这是另一种看待它的方式。

(笑声)

我整个脑袋都亮了,
你想再看一遍吗?

观众:对!

(笑声)

MLJ:这看起来很可怕,但事实并非如此。

真正可怕的
是不了解我们的身体

、大脑和疾病,

以便我们能够有效地治疗它们。

这项技术可以提供帮助。

谢谢你。

(掌声)

谢谢。

(掌声)