Is light a particle or a wave Colm Kelleher

Translator: Andrea McDonough
Reviewer: Bedirhan Cinar

You look down and see a yellow pencil lying on your desk.

Your eyes, and then your brain, are collecting

all sorts of information about the pencil:

its size,

color,

shape,

distance,

and more.

But, how exactly does this happen?

The ancient Greeks were the first

to think more or less scientifically

about what light is and how vision works.

Some Greek philosophers,

including Plato and Pythagoras,

thought that light originated in our eyes

and that vision happened when little, invisible probes

were sent to gather information about far-away objects.

It took over a thousand years

before the Arab scientist, Alhazen,

figured out that the old, Greek theory of light couldn’t be right.

In Alhazen’s picture, your eyes don’t send out

invisible, intelligence-gathering probes,

they simply collect the light that falls into them.

Alhazen’s theory accounts for a fact

that the Greek’s couldn’t easily explain:

why it gets dark sometimes.

The idea is that very few objects actually emit their own light.

The special, light-emitting objects,

like the sun

or a lightbulb,

are known as sources of light.

Most of the things we see,

like that pencil on your desk,

are simply reflecting light from a source

rather than producing their own.

So, when you look at your pencil,

the light that hits your eye actually originated at the sun

and has traveled millions of miles across empty space

before bouncing off the pencil and into your eye,

which is pretty cool when you think about it.

But, what exactly is the stuff that is emitted from the sun

and how do we see it?

Is it a particle, like atoms,

or is it a wave, like ripples on the surface of a pond?

Scientists in the modern era would spend a couple of hundred years

figuring out the answer to this question.

Isaac Newton was one of the earliest.

Newton believed that light is made up

of tiny, atom-like particles, which he called corpuscles.

Using this assumption, he was able to explain some properties of light.

For example, refraction,

which is how a beam of light appears to bend

as it passes from air into water.

But, in science, even geniuses sometimes get things wrong.

In the 19th century, long after Newton died,

scientists did a series of experiments

that clearly showed that light can’t be made up

of tiny, atom-like particles.

For one thing, two beams of light that cross paths

don’t interact with each other at all.

If light were made of tiny, solid balls,

then you would expect that some of the particles from Beam A

would crash into some of the particles from Beam B.

If that happened, the two particles involved in the collision

would bounce off in random directions.

But, that doesn’t happen.

The beams of light pass right through each other

as you can check for yourself

with two laser pointers and some chalk dust.

For another thing, light makes interference patterns.

Interference patterns are the complicated undulations that happen

when two wave patterns occupy the same space.

They can be seen when two objects

disturb the surface of a still pond,

and also when two point-like sources of light

are placed near each other.

Only waves make interference patterns,

particles don’t.

And, as a bonus, understanding that light acts like a wave

leads naturally to an explanation of what color is

and why that pencil looks yellow.

So, it’s settled then, light is a wave, right?

Not so fast!

In the 20th century, scientists did experiments

that appear to show light acting like a particle.

For instance, when you shine light on a metal,

the light transfers its energy to the atoms in the metal

in discrete packets called quanta.

But, we can’t just forget about properties like interference, either.

So these quanta of light aren’t at all like

the tiny, hard spheres Newton imagined.

This result, that light sometimes behaves like a particle

and sometimes behaves like a wave,

led to a revolutionary new physics theory called

quantum mechanics.

So, after all that, let’s go back to the question,

“What is light?”

Well, light isn’t really like anything

we’re used to dealing with in our everyday lives.

Sometimes it behaves like a particle

and other times it behaves like a wave,

but it isn’t exactly like either.

译者:Andrea McDonough
审稿人:Bedirhan Cinar

你低头看到桌上放着一支黄色铅笔。

你的眼睛,然后是你的大脑,正在收集

关于铅笔的各种信息:

它的大小、

颜色、

形状、

距离

等等。

但是,这究竟是如何发生的呢?

古希腊人是第一个

或多或少科学地

思考什么是光以及视觉如何工作的人。

包括柏拉图和毕达哥拉斯在内的一些希腊哲学家

认为,光起源于我们的眼睛,

而这种视觉发生在发送微小的、不可见的探测器

以收集有关遥远物体的信息时。

阿拉伯科学家阿尔哈岑花了一千年的时间

发现古老的希腊光理论不可能是正确的。

在 Alhazen 的照片中,你的眼睛不会发出

隐形的、收集情报的探测器,

它们只是收集掉入眼睛的光。

Alhazen 的理论解释了一个

希腊人无法轻易解释的事实:

为什么有时会变黑。

这个想法是很少有物体实际上会发出自己的光。

特殊的发光物体,

如太阳

或灯泡,

被称为光源。

我们看到的大多数东西,

比如你桌子上的那支铅笔,

只是反射来自光源的光,

而不是产生它们自己的光。

所以,当你看着你的铅笔时

,照射到你眼睛的光实际上来自太阳,

并且

在从铅笔反弹到你的眼睛之前已经穿越了数百万英里的空旷空间,

当你想到它时,这非常酷。

但是,太阳发出的究竟是什么东西

,我们如何看到它?

它是像原子一样的粒子

,还是像池塘表面的涟漪一样的波?

现代科学家将花费几百年的时间

来找出这个问题的答案。

艾萨克·牛顿是最早的人之一。

牛顿相信光是

由微小的、类似原子的粒子组成的,他称之为微粒。

利用这个假设,他能够解释光的一些特性。

例如,折射,

这是一束光在

从空气进入水中时出现弯曲的方式。

但是,在科学中,即使是天才有时也会出错。

19 世纪,在牛顿去世很久之后,

科学家们进行了一系列实验

,清楚地表明光不能

由微小的原子状粒子组成。

一方面,交叉路径的两束光

根本不相互作用。

如果光是由微小的实心球组成的,

那么你会认为光束 A 的一些粒子

会碰撞光束 B 的一些粒子。

如果发生这种情况,参与碰撞的两个粒子

会在随机方向反弹 .

但是,这不会发生。

光束相互穿过

,您可以

使用两个激光笔和一些粉笔粉自行检查。

另一方面,光会产生干涉图案。

干涉图案是

当两个波浪图案占据相同空间时发生的复杂波动。

当两个物体

干扰静止池塘的表面时,

以及当两个点状光源

彼此靠近放置时,可以看到它们。

只有波会产生干涉图案,

粒子不会。

而且,作为奖励,了解光的作用就像波浪

自然会导致解释什么是颜色

以及为什么铅笔看起来是黄色的。

那么,就这么定了,光是波,对吧?

没那么快!

在 20 世纪,科学家们进行的实验

似乎表明光像粒子一样起作用。

例如,当您将光照射在金属上时

,光会以

称为量子的离散数据包的形式将其能量传递给金属中的原子。

但是,我们也不能仅仅忘记干扰等属性。

所以这些光量子根本不像

牛顿想象的微小而坚硬的球体。

这一结果,即光有时表现得像粒子

,有时表现得像波,

导致了一种革命性的新物理理论,称为

量子力学。

所以,毕竟,让我们回到这个问题,

“什么是光?”

好吧,光并不像

我们在日常生活中习惯处理的任何东西。

有时它表现得像一个粒子

,有时它表现得像一个波,

但两者都不完全一样。