Light seconds light years light centuries How to measure extreme distances YuanSen Ting

Light is the fastest thing we know.

It’s so fast that we measure
enormous distances

by how long it takes
for light to travel them.

In one year, light travels
about 6,000,000,000,000 miles,

a distance we call one light year.

To give you an idea of just
how far this is,

the Moon, which took the Apollo astronauts
four days to reach,

is only one light-second from Earth.

Meanwhile, the nearest star beyond
our own Sun is Proxima Centauri,

4.24 light years away.

Our Milky Way is on the order of
100,000 light years across.

The nearest galaxy to our own, Andromeda,

is about 2.5 million light years away

Space is mind-blowingly vast.

But wait, how do we know how
far away stars and galaxies are?

After all, when we look at the sky,
we have a flat, two-dimensional view.

If you point you finger to one star,
you can’t tell how far the star is,

so how do astrophysicists figure that out?

For objects that are very close by,

we can use a concept called
trigonometric parallax.

The idea is pretty simple.

Let’s do an experiment.

Stick out your thumb and
close your left eye.

Now, open your left eye and
close your right eye.

It will look like your thumb has moved,

while more distant background objects
have remained in place.

The same concept applies when
we look at the stars,

but distant stars are much, much
farther away than the length of your arm,

and the Earth isn’t very large,

so even if you had different telescopes
across the equator,

you’d not see much of a shift in position.

Instead, we look at the change in the
star’s apparent location over six months,

the halfway point of the Earth’s
yearlong orbit around the Sun.

When we measure the relative positions
of the stars in summer,

and then again in winter,
it’s like looking with your other eye.

Nearby stars seem to have moved
against the background

of the more distant stars and galaxies.

But this method only works for objects no
more than a few thousand light years away.

Beyond our own galaxy,
the distances are so great

that the parallax is too small to detect
with even our most sensitive instruments.

So at this point we have to rely
on a different method

using indicators we call standard candles.

Standard candles are objects whose
intrinsic brightness, or luminosity,

we know really well.

For example, if you know how bright
your light bulb is,

and you ask your friend to hold
the light bulb and walk away from you,

you know that the amount of light
you receive from your friend

will decrease by the distance squared.

So by comparing the amount
of light you receive

to the intrinsic brightness
of the light bulb,

you can then tell how far away
your friend is.

In astronomy, our light bulb turns out to
be a special type of star

called a cepheid variable.

These stars are internally unstable,

like a constantly inflating
and deflating balloon.

And because the expansion and contraction
causes their brightness to vary,

we can calculate their luminosity
by measuring the period of this cycle,

with more luminous stars
changing more slowly.

By comparing the light
we observe from these stars

to the intrinsic brightness we’ve
calculated this way,

we can tell how far away they are.

Unfortunately, this is still not
the end of the story.

We can only observe individual stars
up to about 40,000,000 light years away,

after which they become
too blurry to resolve.

But luckily we have another type
of standard candle:

the famous type 1a supernova.

Supernovae, giant stellar explosions
are one of the ways that stars die.

These explosions are so bright,

that they outshine the galaxies
where they occur.

So even when we can’t see
individual stars in a galaxy,

we can still see supernovae
when they happen.

And type 1a supernovae turn out
to be usable as standard candles

because intrinsically bright ones
fade slower than fainter ones.

Through our understanding
of this relationship

between brightness and decline rate,

we can use these supernovae
to probe distances

up to several billions of light years away.

But why is it important to see
such distant objects anyway?

Well, remember how fast light travels.

For example, the light emitted by the Sun
will take eight minutes to reach us,

which means that the light we see now
is a picture of the Sun eight minutes ago.

When you look at the Big Dipper,

you’re seeing what it looked like
80 years ago.

And those smudgy galaxies?

They’re millions of light years away.

It has taken millions of years for
that light to reach us.

So the universe itself is in some sense
an inbuilt time machine.

The further we can look back,
the younger the universe we are probing.

Astrophysicists try to read the history
of the universe,

and understand how
and where we come from.

The universe is constantly sending us
information in the form of light.

All that remains if for us to decode it.

光是我们所知道的最快的东西。

它是如此之快,以至于我们

通过光传播它们需要多长时间来测量巨大的距离

在一年中,光传播了
大约 6,000,000,000,000 英里,

我们称之为一光年。

为了让您
了解这有多远

,阿波罗宇航员花了
四天时间到达的月球

距离地球只有一光秒。

与此同时,距离我们太阳最近的恒星
是比邻星,距离我们

4.24 光年。

我们的银河系的直径约为
100,000 光年。

距离我们最近的星系仙女座,距离我们

大约 250 万

光年。

但是等等,我们怎么知道
恒星和星系有多远?

毕竟,当我们看天空时,
我们看到的是平面的二维视图。

如果你用手指指向一颗恒星,
你就无法判断这颗恒星有多远,

那么天体物理学家是如何计算出来的呢?

对于非常接近的物体,

我们可以使用一个叫做
三角视差的概念。

这个想法很简单。

让我们做一个实验。

伸出你的拇指,
闭上你的左眼。

现在,睁开你的左眼,
闭上你的右眼。

看起来您的拇指已移动,

而更远的背景
对象仍保留在原处。

当我们看星星时,同样的概念也适用

但遥远
的星星比你的手臂远得多,

而且地球也不是很大,

所以即使你在赤道上有不同的望远镜

你也会 没有看到太大的位置变化。

相反,我们会观察
这颗恒星在六个月内的明显位置变化

,即地球
围绕太阳运行一年的轨道的中点。

当我们
在夏天测量星星的相对位置时,

然后在冬天再测量一次,
就像用另一只眼睛看一样。

附近的恒星似乎

在更遥远的恒星和星系的背景下移动。

但这种方法只适用于
距离不超过几千光年的物体。

在我们自己的银河系之外
,距离如此之大

,以至于视差太小
,即使是我们最敏感的仪器也无法检测到。

因此,在这一点上,我们必须依靠

使用我们称为标准蜡烛的指标的不同方法。

标准蜡烛是我们非常了解其
内在亮度或光度的物体

例如,如果你知道
你的灯泡有多亮,

并让你的朋友
拿着灯泡离开你,

你就知道
你从朋友那里得到的光量

会随着距离的平方而减少。

因此,通过将
您接收到的光量与灯泡

的固有亮度
进行比较,

您就可以知道
您的朋友离您有多远。

在天文学中,我们的灯泡原来
是一种特殊类型的恒星,

称为造父变星。

这些恒星内部不稳定,

就像一个不断膨胀
和放气的气球。

而且由于膨胀和收缩
导致它们的亮度发生变化,

我们可以
通过测量这个周期的周期来计算它们的光度,

发光的恒星
越多,变化越慢。

通过将
我们从这些恒星观察

到的光与我们以
这种方式计算的内在亮度进行比较,

我们可以知道它们有多远。

不幸的是,这仍然不是
故事的结局。

我们只能观察
到大约 40,000,000 光年以外的单个恒星,

之后它们变得
太模糊而无法分辨。

但幸运的是,我们还有另
一种标准蜡烛

:著名的 1a 型超新星。

超新星,巨大的恒星爆炸
是恒星死亡的方式之一。

这些爆炸是如此明亮,

以至于它们超过
了它们发生的星系。

因此,即使我们看不到
星系中的单个恒星,当它们发生时

我们仍然可以看到超新星

1a 型超新星被
证明可以用作标准蜡烛,

因为本质上明亮的超新星
比暗淡的消逝得慢。

通过我们对

亮度和衰减率之间这种关系的了解,

我们可以利用这些超新星
来探测

最远几十亿光年的距离。

但是为什么看到
如此遥远的物体很重要呢?

好吧,记住光的传播速度有多快。

例如,太阳发出的光
需要八分钟才能到达我们,

这意味着我们现在看到的
光是八分钟前太阳的照片。

当您查看北斗七星时,

您会看到
80 年前的样子。

还有那些脏兮兮的星系?

它们在数百万光年之外。 那道光到达

我们需要数百万年的时间

所以宇宙本身在某种意义上
是一个内置的时间机器。

我们回顾得越远,
我们探索的宇宙就越年轻。

天体物理学家试图解读宇宙的历史

并了解
我们如何以及从何而来。

宇宙不断
以光的形式向我们发送信息。

如果我们要对其进行解码,剩下的一切。