Shedding light on dark matter Patricia Burchat

[Music]

[Music]

as a particle physicist I study the

elementary particles and how they

interact on the most fundamental level

for most of my research career I’ve been

using accelerators such as the electron

accelerator at Stanford University just

up the road to study things on the

smallest scale but more recently I’ve

been turning my attention to the

universe on the largest scale because as

I’ll explain to you the questions on the

smallest and the largest scale are

actually very connected so I’m going to

tell you about our 21st century view of

the universe what it’s made of and what

the big questions in the physical

sciences are at least some of the big

questions so recently we have realized

that the ordinary matter in the universe

and by ordinary matter

I mean you okay me the planets the Stars

the galaxies the ordinary matter makes

up only a few percent of the content of

the universe almost a quarter or

approximately a quarter of the matter in

the universe is stuff that’s invisible

by invisible I mean it doesn’t absorb in

the electromagnetic spectrum it doesn’t

emit in the electromagnetic spectrum it

doesn’t reflect it doesn’t interact with

the electromagnetic spectrum which is

what we use to detect things doesn’t

interact at all so how do we know it’s

there

we know it’s there by its gravitational

effects in fact this dark matter

dominates the gravitational effects in

the universe on a large scale and I’ll

be telling you about the evidence for

that what about the rest of the pie the

rest of the pie is a very mysterious

substance called dark energy more about

that later okay so for now let’s turn to

the evidence for dark matter in these

galaxies especially in a spiral galaxy

like this most of the mass of the stars

is concentrated in the middle of the

galaxy this huge mass of all these stars

keeps stars in circular orbits in the

galaxies so we have these stars going

around in circles like this as you can

imagine even if you know though physics

this should be intuitive okay that stars

that are closer to the mass in the

middle will be rotating at a higher

speed than those that are fahrt further

out here okay so what you would expect

is that if you measured the orbital

speed of the star

ours that they should be slower on the

edges than on the inside in other words

if we measured speed as a function of

distance this is the only time I’m going

to show a graph okay we would expect

that it goes down as the distance

increases from the center of the galaxy

when those measurements are made instead

what we find is that the speed is

basically constant as a function of

distance if it’s constant that means

that the stars out here are feeling the

gravitational effects of matter that we

do not see in fact this galaxy and every

other galaxy appears to be embedded in a

cloud of this invisible dark matter and

this cloud of matter is much more

spherical than the galaxies themselves

and it extends over much what wider

range than the galaxies so we see the

galaxy and fixate on that but it’s

actually a cloud of dark matter that’s

dominating the structure and the

dynamics of this galaxy galaxies

themselves are not strewn randomly in

space they tend to cluster and this is

an example of a very actually famous

cluster the Coma Cluster and there are

thousands of galaxies in this cluster

there the white fuzzy elliptical things

here so these galaxies clusters we take

a snapshot now we take a snapshot in a

decade it’ll look identical but these

galaxies are actually moving at

extremely high speeds they’re moving

around in in this gravitational

potential well of this cluster okay so

all these galaxies are moving we can

measure the speeds of these galaxies

their orbital velocities and figure out

how much mass is in this cluster and

again what we find is that there is much

more mass there than can be accounted

for by the galaxies that we see or if we

look in other parts of the

electromagnetic spectrum we see that

there’s a lot of gas in this cluster as

well but that cannot account for the

mass either in fact there appears to be

about ten times as much mass here in the

form of this invisible or dark matter as

there is in the ordinary matter okay it

would be nice if we could see this dark

matter a little bit more directly I’m

just putting this big blue blob on there

okay to try to remind you that it’s

there can we see it more visually yes we

can and so let me lead you through how

we can do this so here is an observer it

could be an eye could be a telescope and

suppose there’s a galaxy out here in the

universe

how do we see that galaxy a ray of light

leaves the galaxy and travels through

the universe for perhaps billions of

years before it enters the telescope or

your eye now how do we deduce where the

galaxy is well we deduce it by the

direction that the Ray is traveling as

it enters our eye right we say the ray

of light came this way the galaxy must

be there okay now suppose I put in the

middle a cluster of galaxies and don’t

forget the dark matter okay now if we

consider a different ray of light one

going off like this

we now need to take into account what

Einstein predicted when he developed

general relativity and that was that the

gravitational field due to mass will

deflect not only the trajectory of

particles but will deflect light itself

so this light ray will not continue in a

straight line but would rather band and

could end up going into our eye where

will this observer see the galaxy you

can respond up right we extrapolate

backwards and say the galaxy is up here

is there any other ray of light that

could make it into the observers eye

from that galaxy yes

great I see people going down like this

so a ray of light could go down be bent

up into the observers eye and the

observer sees a ray of light here now

take into account the fact that we live

in a three-dimensional universe okay

three-dimensional space are there any

other rays of light that could make it

into the eye yes the Rays would lie on a

I like to say yeah on a a cone so

there’s a whole array of light rays of

light on a cone that will all be bent by

that cluster and make it into the

observers eye if there’s a cone of light

coming into my eye what do I see a

circle a ring it’s called an Einstein

ring Einstein predicted that okay now

it’ll only be a perfect ring if the

source the deflector and the eyeball in

this case are all in a perfectly

straight line if they’re slightly skewed

we’ll see a different image now you can

do an experiment tonight over the

reception okay

to figure out what that image will look

like because it turns out that there is

a kind of lens that we can devise that

has the right shape to produce the

kind of effect we call this

gravitational lensing and so this is

your instrument okay but ignore the top

part it’s the base that I want you to

concentrate okay so actually at home

whenever we break a wineglass I save the

bottom take it over to the machine shop

we shave it off and I have a little

gravitational lens okay so it’s got the

right shape to produce the lensing and

so the next thing you need to do in your

experiment is grab a napkin I grabbed a

piece of graph paper I’m a physicist so

a napkin draw a little model galaxy in

the middle and now put the lens over the

galaxy and what you’ll find is that

you’ll see a ring an Einstein ring now

move the base off to the side and the

ring will split up into arcs okay and

you can put it on top of any image on

the graph paper you can see how lovely

the lines on the graph paper have been

distorted and again this is a kind of an

accurate model of what happens with the

gravitational lensing okay so the

question is do we see this in the sky

do we see arcs in the sky when we look

at say a cluster of galaxies and the

answer is yes and so here’s an image

from the Hubble Space Telescope many of

the images you are seeing earlier from

the Hubble Space Telescope well first of

all for the golden shaped galaxies those

are the galaxies in the cluster they’re

the ones that are embedded in that sea

of dark matter that are causing the

bending of the light to cause these

optical illusions or mirages practically

of the background galaxies so the

streaks that you see all these streaks

are actually distorted images of

galaxies that are much further away so

what we can do then is based on how much

distortion we see in those images we can

calculate how much mass there must be in

this cluster and it’s an enormous amount

of mass and also you can tell by eye by

looking at this that these arcs are not

centered on individual galaxies they are

centered on some more spread-out

structure and that is the dark matter

that is being that is in which the

cluster is embedded okay so this is the

closest you can get to kind of seeing at

least the effects of the dark matter

with your naked eye okay so a quick

review then okay to say that you’re

following so the evidence that we have

that a quarter of the universe is dark

matter this graph

patiently attracting stuff is that

galaxies the speeds with which stars

orbit and galaxies is much too large it

must be embedded in dark matter the

speed with which galaxies within

clusters are orbiting is much too large

it must be embedded in dark matter and

we see these gravitational lensing

effects these distortions that say that

again clusters are embedded in dark

matter ok so now let’s turn to dark

energy so to understand the evidence for

dark energy we need to discuss something

that Stephen Hawking referred to in the

previous session and that is the fact

that space itself is expanding so if we

imagine a section of our infinite

universe ok and so I’ve put down four

spiral galaxies ok and imagine that you

put down a set of tape measures okay so

every line on here corresponds to a tape

measure horizontal or vertical for

measuring where things are if you could

do this what you would find that with

each passing day each passing year each

passing billions of years okay the

distance between galaxies is getting

greater and it’s not because galaxies

are moving away from each other through

space they’re not necessarily moving

through space they are moving away from

each other because space itself is

getting bigger okay that’s what the

expansion of the universe or space means

so they’re moving further apart now and

what Stephen Hawking mentioned as well

is that after the Big Bang space

expanded at a very rapid rate

but because gravitationally attracting

matter is embedded in this space it

tends to slow down the expansion of the

space okay

so the expansion slows down with time so

in the last century okay people debated

about whether this expansion of space

would continue forever whether it would

slow down you know will be slowing down

but continued forever

slowed down and stopped asymptotically

stopped or slowed down stop and then

reverse so it starts to contract again

so a little over a decade ago two groups

of business

astronomers set out to measure the rate

at which the expansion of space was

slowing down okay by how much less is

expanding today compared to say a couple

of billion years ago the startling

answer to this question okay from these

experiments was that space is expanding

at a faster rate today than it was a few

billion years ago okay so the expansion

of space is actually speeding up this

was a completely surprising result there

is no persuasive theoretical argument

for why this should happen okay no one

was predicting ahead of time this is

what’s going to be found it was the

opposite of what was expected so we need

something to be able to explain that now

it turns out in the mathematics you can

put it in as a term that’s an energy but

it’s a completely different type of

energy from anything we’ve ever seen

before we call it dark energy and it has

this effect of causing space to expand

but we don’t have a good motivation for

putting it in there at this point ok so

it’s really unexplained as to why we

need to put it in now so at this point

then what I want to really emphasize to

you is that first of all dark matter and

dark energy are completely different

things ok

there are really two mysteries out there

as to what makes up most of the universe

and they have very different effects

dark matter because it gravitationally

attracts it tends to encourage the

growth of structure okay so clusters of

galaxies will tend to form because of

all this gravitational attraction dark

energy on the other hand is putting more

and more space between the galaxies

makes it the gravitational attraction

between them decrease and so it impedes

the growth of structure so by looking at

things like clusters of galaxies and how

they they’re number density how many

there are as a function of time we can

learn about how dark matter and dark

energy compete against each other in

structure forming in terms of dark

matter I said that we don’t have any you

know really persuasive argument for dark

energy do we have anything for dark

matter and the answer is yes we have

well-motivated candidates for the dark

matter

now what do I mean by what well

motivated I mean that we have

mathematically consistent theories that

were actually introduced to explain a

completely different phenomenon okay

things that I haven’t even talked about

that each predict the existence of a

very weakly interacting new particle so

this is exactly what you want in physics

where a prediction comes out of a

mathematically consistent theory that

was actually developed for something

else but we don’t know if either of

those are actually the Dark Matter

candidate okay one or both who knows or

it could be something completely

different now we look for these dark

matter particles because after all they

are here in the room okay and they

didn’t come in the door they just pass

through anything they can come through

the building through the earth there so

non-interacting so one way to look for

them is to build detectors that are

extremely sensitive to a dark matter

particle coming through and bumping it

so a crystal that will ring if that

happens so one of my colleagues up the

road and his collaborators have built

such a detector and they’ve put it deep

down in an iron mine in Minnesota okay

deep under the ground in fact in the

last couple of days announced the most

sensitive results so far they haven’t

seen anything okay but it puts limits on

what the mass and the interaction

strength of these dark matter particles

are there’s going to be a satellite

telescope launched later this year and

it will look towards the middle of the

galaxy to see if we can see dark matter

particles annihilating and producing

gamma rays that could be detected with

this the Large Hadron Collider a

particle physics accelerator that will

be turning on later this year it is

possible that dark matter particles

might be produced at the Large Hadron

Collider now because they are so non

interactive they will actually escape

the detector so their signature will be

missing energy okay now unfortunately

there’s a lot of new physics whose

signature could be missing energy so

it’ll be hard to tell the difference and

finally for future endeavors there are

telescopes being designed specifically

to address the questions of dark matter

and dark energy ground-based telescope

and there are three space-based

telescopes that are in competition right

now to be launched to investigate dark

matter in darken

so in terms of the big questions what is

dark matter what is dark energy big

questions facing physics and I’m sure

you have lots of questions which I very

much look forward to addressing over the

next 72 hours while I’m here okay thank

you they have names like idle time books

and Panther coffee with free enterprise

puns like hue and cry and smash records

and one Saturday a year

small businesses remind the nation of

the benefits of shopping small like the

way David Kaplan at Shell lumber shows

you how to use a chop saw then invites

you back when the warehouse becomes the

community theater or the way Camille

rustler of Everafter

travels the journey from despair to

bliss with every bride to be on just one

day 100 million of us joined a movement

and Main Street found its mind again and

Main Street found its fight again and we

the locals found delight again that’s

the power of all that’s the power that’s

the power all that’s the membership

effect of American Express

you

[音乐]

[音乐]

作为一名粒子物理学家,在我的大部分研究生涯中,我研究

基本粒子以及它们

如何在最基本的层面上相互作用

我一直在

使用加速器,例如

斯坦福

大学的电子加速器 最小尺度上的事物,

但最近

我一直将注意力转向

最大尺度上的宇宙,因为正如

我将向您解释的那样,

最小和最大尺度上的问题

实际上是非常相关的,所以我要

告诉 关于我们 21 世纪

的宇宙观,它是由什么构成

的,物理科学中的大问题是什么

,至少是一些大

问题,所以最近我们意识到

宇宙

中的普通物质和普通物质,

我的意思是你还好 我 行星

星星 星系 普通物质

只占宇宙内容的百分之几

宇宙中几乎四分之一或

大约四分之一的物质

是 不可见的东西

我的意思是它不

吸收电磁波谱它不

发射电磁波谱它

不反射它不与

我们用来检测事物的电磁波谱相互作用不

相互作用 所以我们怎么

知道它的存在 我们通过它的引力效应知道它的存在

事实上,这种暗物质

在宇宙中主导着大规模的引力效应

,我

将告诉你关于它的证据,

其余的呢 馅饼的

其余部分是一种非常神秘的

物质,称为

暗能量,稍后会详细介绍,所以现在让我们转向

这些星系中暗物质的证据,

尤其是在像这样的螺旋星系中,

大部分恒星的质量

是 集中在银河系的中央,

所有这些恒星的巨大质量

使恒星在星系中保持圆形轨道,

所以我们让这些恒星

像你想象的那样绕着圆圈旋转

如果你知道物理学,

这应该是直观的

,靠近中间质量的恒星

将以更高的速度旋转,而

不是那些

离这里更远的恒星,所以你会期望的

是,如果你测量轨道

我们的恒星的速度,它们在

边缘应该比在内部慢,换句话说,

如果我们测量速度作为距离的函数,

这是我唯一一次

要显示图表,好吧,我们

预计它会下降 当进行这些测量时,随着

距离星系中心的距离增加,

我们发现速度基本上是

恒定的,

如果它是恒定的,则作为距离的函数,这

意味着这里的恒星正在

感受到我们的物质的引力效应

实际上看不到这个星系和

其他所有星系似乎都嵌入了

这种看不见的暗物质云中,而这团物质

比星系本身更球形,

而且它 延伸到比星系更广的

范围,所以我们看到了

星系并专注于它,但它

实际上是一团暗物质云,它

主导着这个星系的结构和

动力学星系

本身并不是随机散布在

空间中的,它们往往会聚集在一起,这

是一个非常著名的

星团的例子,彗发星团,

这个星团中有数千个星系,这里

有白色模糊椭圆形的东西

,所以这些星系团我们拍

一张快照,现在我们在十年后拍一张快照,

它看起来是一样的,但是 这些

星系实际上正在以

极高的速度移动 它们在

这个星团的引力势阱

中移动

我们再次发现,那里的

质量

比我们看到的星系或我们看到的星系所能解释的要

多得多 在电磁光谱的其他部分,

我们看到

这个星团中也有很多气体,

但这也不能解释

质量,事实上

,这种不可见或暗物质的质量似乎是这里的十倍

在普通物质中 好吧

如果我们能更直接地看到这个暗物质会

很好 我

只是把这个蓝色的大斑点放在那里

可以试着提醒你它在

那里 我们可以更直观地看到它 是的 我们

可以,所以让我带领你了解

我们如何做到这一点,所以这里是一个观察者,它

可能是一只眼睛,可能是一架望远镜,

假设宇宙中有一个星系,

我们如何看到这个星系一束光线

离开 银河系并在

进入望远镜或

你的眼睛之前穿过宇宙可能数十亿年现在我们如何推断

星系的位置我们通过

光线

进入我们眼睛时的行进方向推断它正确我们说光线

升 天是这样来的,现在星系一定

在那里,好吧假设我在中间放了

一个星系团,不要

忘记暗物质,现在好吧,如果

我们考虑像这样发出不同的光线,

我们现在需要考虑 考虑一下

爱因斯坦在发展广义相对论时的预测

,即

由质量引起的引力场

不仅

会偏转粒子的轨迹,还会偏转光本身,

因此这条光线不会继续沿直线前进,

而是会带状并

可能结束 向上进入我们的眼睛

这个观察者会在哪里看到星系 你

可以做出正确的回应 我们

向后推断并说星系就在这里

是否有任何其他光线

可以从那个星系进入观察者的眼睛

是的

太好了 我看到了人 像这样下降,

所以一束光可以向下

弯曲进入观察者的眼睛,

观察者在这里看到一束光现在

考虑到我们生活

在一个三维空间中的事实 离子宇宙 好吧

三维空间 是否有任何

其他光线可以

进入眼睛 都会被

那个星团弯曲并进入

观察者的眼睛如果有一个锥形光

进入我的眼睛我会看到一个

圆圈一个环它被称为爱因斯坦

环爱因斯坦预测好吧现在

它只会是一个完美的环

如果在这种情况下,偏转器和眼球

都在一条完美的

直线上,如果它们略微倾斜,

我们将看到不同的图像现在你可以

在今晚在接收端做一个实验,

以确定该图像的外观

就像因为事实

证明我们可以设计一种透镜,它

具有正确的形状来产生

我们称之为

引力透镜的那种效果,所以这是

你的仪器,但忽略

顶部它是我想要的底座 你要

集中注意力,所以实际上

每次我们打破酒杯时都在家里我保存

底部把它带到机械车间,

我们把它刮掉,我有一个小

引力透镜,所以它有

合适的形状来生产透镜,

所以接下来你要做的就是 在你的实验中需要做的

是拿一张餐巾纸我拿了

一张方格纸我是一名物理学家

所以餐巾纸在中间画了一个小模型星系

现在把镜头放在

星系上你会发现

你 会看到一个环 一个爱因斯坦环 现在

将底座移到一边,

环会分裂成

弧形 已经被

扭曲了,这又是一种

关于引力

透镜效应的准确模型

答案是肯定的,所以这是一张

来自 th 的图片 e 哈勃太空望远镜

你之前从哈勃太空望远镜看到的许多图像

首先是金色

的星系,它们是星团中的星系,

它们是嵌入在

暗物质海洋中的星系

光线的弯曲

实际上

导致了背景星系的这些视错觉或海市蜃楼,

所以你看到的所有这些

条纹实际上

是更远的星系的扭曲图像,所以

我们可以做的是基于

我们有多少扭曲 在这些图像中,我们可以

计算出这个星团中必须有多少质量

,这是一个巨大

的质量,而且你可以通过

观察这个来判断这些弧不是

以单个星系为

中心,而是以一些更分散的星系为中心 -out

结构,这

就是嵌入集群的暗物质,所以这是

你能看到的最接近的

至少 ef

用你的肉眼观察暗物质的影响 好的,所以快速

回顾一下,然后可以说你正在

关注,所以我们有证据

表明宇宙的四分之一是

暗物质 这张图表

耐心地吸引着东西是

星系的速度 恒星的

轨道和星系太大了 它

必须嵌入暗物质

中 星系团内的

星系运行速度太大

它必须嵌入暗物质中

我们看到这些引力透镜

效应 这些扭曲

再次表明星系团是 嵌入

暗物质 好的,所以现在让我们转向暗能量,

以便了解暗能量的证据,

我们需要讨论

斯蒂芬霍金在

上一节中提到的一些事情,那

就是空间本身正在膨胀的事实,所以如果我们

想象一个部分 我们无限的

宇宙 好吧,所以我放下了四个

螺旋星系,好吧,想象你

放下一套卷尺,好吧,所以

这里的每一行 响应

水平或垂直卷尺来

测量事物的位置 如果你能

做到这一点 你会发现

每一天每一年

每一亿年 好吧

星系之间的距离越来越

大,这不是因为星系

在移动 在

太空中彼此远离 他们不一定是

在太空中移动 他们正在彼此远离,

因为空间本身

正在变得更大 还提到的

是,在大爆炸空间

以非常快的速度膨胀之后,

但是由于引力吸引的

物质嵌入在这个空间中,它

往往会减慢空间的膨胀,

所以膨胀会随着时间的推移而减慢,所以

在上个世纪还可以 人们

争论这种空间的扩张是否

会永远持续下去,是否会

放慢速度,你知道会放慢速度吗? 自己,

但永远持续

减速并停止 渐近

停止或减速 停止然后

反转,因此它再次开始收缩

所以十多年前,

两组商业

天文学家开始测量

空间扩张

放缓的速度 好吧,

与几十亿年前相比,今天的扩张少了多少

从这些实验中可以得出这个问题的惊人答案

是,

今天的空间正在以比几十亿年前更快的速度

扩张 空间实际上正在加速 这

是一个完全令人惊讶的结果

没有有说服力的理论

论据说明为什么会发生这种

情况 能够解释,现在

在数学中你可以

把它作为一个术语,它是一种能量,但

它是一种完全不同类型的能量

来自我们之前见过的任何东西的能量,

我们称之为暗能量,它有

导致空间膨胀的效果,

但我们现在没有很好的动机

把它放在那里,好吧,

所以真的无法解释为什么我们

现在需要把它放进去,所以在这一点

上,我想真正向你强调的

是,首先,暗物质和

暗能量是完全不同的

东西

他们有非常不同的影响

暗物质因为它的引力

吸引它倾向于鼓励

结构的增长所以

星系团会因为

所有这些引力吸引而倾向于形成

另一方面暗能量

在星系之间放置越来越多的空间

使得它们之间的引力

减少,因此它阻碍

了结构的增长,所以通过观察

像星系团这样的东西以及

它们的数量密度 有多少

作为时间的函数我们可以

了解暗物质和暗能量如何在暗物质

的结构形成中相互竞争

我说我们没有任何你

知道的真正有说服力的暗能量论据

吗? 有任何关于暗物质的东西

,答案是肯定的,我们现在有

动机良好的暗物质候选

者我所说的

动机是什么我的意思是我们有

数学上一致的理论,

这些理论实际上是为了解释一个

完全不同的现象而

引入的 我什至没有谈论

过每个都预测存在一个

相互作用非常弱的新粒子,所以

这正是你在物理学中想要的,

预测来自一个

数学上一致的理论

,实际上是为其他东西开发的,

但我们不 知道其中任何一个

实际上是暗物质

候选者,好吧,一个或两个谁知道,或者

现在我们寻找的可能是完全不同的东西 这些

暗物质粒子,因为毕竟

他们在房间里还好,他们

没有进门,他们只是

穿过任何东西,他们可以

穿过建筑物穿过那里的地球,所以

没有相互作用,所以寻找

它们的一种方法是 建造

穿过并撞击它的暗物质粒子极为敏感

的检测器

在明尼苏达州的一个铁矿 还好

在地下深处 事实上在

过去的几天里公布了最

敏感的结果 到目前为止他们还没有

看到任何好的结果 但它限制了

这些暗物质粒子的质量和相互作用

强度

今年晚些时候是否会有卫星望远镜发射,

它将向

银河系中心看,看看我们是否能看到暗物质

粒子湮灭并产生

伽马r

大型强子对撞机是一种

粒子物理加速器,

将于今年

晚些时候启动 探测器,所以他们的签名会

丢失能量 好吧,不幸

的是,现在有很多新物理学的

签名可能会丢失能量,所以

很难区分,

最后为了未来的努力,有

专门设计的望远镜

来解决黑暗的问题 物质

和暗能量地面望远镜

,目前有三台天基

望远镜正在竞争中

,以研究暗物质中的

暗物质,

所以就大问题而言,什么是

暗物质什么是暗能量?

物理学面临的大问题 我相信

您有很多问题,我

非常期待在

接下来的 72 小时内解决这些问题 s 当我在这里的时候,好的,谢谢

你,他们有空闲时间书籍和黑豹咖啡之类的名字,还有

像色调和哭泣这样的免费企业双关语和打破记录

,每年一个星期六

小企业提醒国家

像大卫那样小规模购物的好处

壳牌木材公司的卡普兰向

您展示如何使用锯子,然后

在仓库变成社区剧院时邀请您回来,

或者永恒的卡米尔·

拉瑟勒(Camille rustler)

与每一位新娘一起经历从绝望到幸福的旅程,只有

一天,我们中有 1 亿人 加入了一场运动

,大街再次找到了自己的想法,

大街再次找到了斗争,

我们当地人再次找到了喜悦,这就是

一切的力量,这

就是力量,这就是美国运通的会员

效应