What is an aurora Michael Molina

Every second,

one million tons of matter
is blasted from the Sun

at the velocity
of one million miles per hour,

and it’s on a collision course with Earth!

But don’t worry,

this isn’t the opening
of a new Michael Bay movie.

This is The Journey of the Polar Lights.

The northern and southern lights,
also known as the aurora Borealis

and aurora Australis, respectively,

occur when high energy
particles from the Sun

collide with neutral atoms
in our atmosphere.

The energy emitted from this crash
produces a spectacle of light

that mankind has marveled at
for centuries.

But the particles' journey
isn’t just as simple

as leaving the Sun and arriving at Earth.

Like any cross-country road trip,
there’s a big detour

and nobody asks for directions.

Let’s track this intergalactic voyage

by focusing on three
main points of their journey:

leaving the Sun, making a pit stop
in the Earth’s magnetic fields,

and arriving at the atmosphere
above our heads.

The protons and electrons
creating the northern lights

depart from the Sun’s corona.

The corona is the outermost layer
of the Sun’s atmosphere

and is one of the hottest regions.

Its intense heat causes the Sun’s hydrogen
and helium atoms to vibrate

and shake off protons and electrons

as if they were stripping off
layers on a hot, sunny day.

Impatient and finally behind the wheel,

these free protons
and electrons move too fast

to be contained by the Sun’s gravity

and group together as plasma,
an electrically charged gas.

They travel away from the Sun
as a constant gale of plasma,

known as the solar wind.

However, the Earth prevents the solar wind
from traveling straight into the planet

by setting up a detour, the magnetosphere.

The magnetosphere is formed
by the Earth’s magnetic currents

and shields our planet
from the solar winds

by sending out the particles
around the Earth.

Their opportunity to continue the journey
down to the atmosphere

comes when the magnetosphere is
overwhelmed by a new wave of travelers.

This event is coronal mass ejection,

and it occurs when the Sun shoots out

a massive ball of plasma
into the solar wind.

When one of these coronal mass ejections
collides with Earth,

it overpowers the magnetosphere
and creates a magnetic storm.

The heavy storm stresses the magnetosphere
until it suddenly snaps back,

like and overstretched elastic band,

flinging some of the detoured
particles towards Earth.

The retracting band of the magnetic field
drags them down to the aurora ovals,

which are the locations
of the northern and southern lights.

After traveling 93 million miles
across the galaxy,

the Sun’s particles finally produce
their dazzling light show

with the help of some friends.

20 to 200 miles above the surface,

the electrons and protons meet up
with oxygen and nitrogen atoms,

and they sure are happy to see each other.

The Sun’s particles high five the atoms,
giving their energy

to the Earth’s neutral
oxygen and nitrogen atoms.

When the atoms in the atmosphere
are contacted by the particles,

they get excited and emit photons.

Photons are small bursts of energy
in the form of light.

The colors that appear in the sky

depend on the wavelength
of the atom’s photon.

Excited oxygen atoms are responsible
for the green and red colors,

whereas excited nitrogen atoms
produce blue and deep red hues.

The collection of these interactions

is what creates the northern
and southern lights.

The polar lights
are best seen on clear nights

in regions close to magnetic
north and south poles.

Nighttime is ideal

because the Aurora
is much dimmer than sunlight

and cannot be seen in daytime.

Remember to look up at the sky
and read up on the Sun’s energy patterns,

specifically sunspots and solar flares,

as these will be good guides
for predicting the auroras.

每秒

有 100 万吨物质

以每小时 100 万英里的速度从太阳中喷出,

并与地球发生碰撞!

但别担心,

这不是
迈克尔·贝新电影的开场。

这就是极光之旅。

来自太阳的高能

粒子与
我们大气中的中性原子碰撞时,就会出现北极光和南极光,分别称为北极光和南极光。

这次撞击释放的能量产生

了人类
数百年来惊叹不已的光奇观。

但粒子的旅程
并不

像离开太阳到达地球那么简单。

像任何越野公路旅行一样,
有一个大弯路

,没有人问路。

让我们

通过关注
他们旅程的三个主要点来追踪这次星际航行:

离开太阳、
在地球磁场中进站

、到达
我们头顶的大气层。 产生北极光

的质子和电子

离开太阳的日冕。

日冕是太阳大气的最外层

,是最热的区域之一。

它的高温导致太阳的氢
原子和氦原子

振动并甩掉质子和电子

,就好像它们
在炎热、阳光明媚的日子里剥离了一层。

不耐烦并最终落在方向盘后面,

这些自由的质子
和电子移动得太快

,无法被太阳的引力所控制,

并聚集在一起形成等离子体,
一种带电的气体。

它们
以恒定的等离子体大风(

称为太阳风)的形式远离太阳。

然而,地球

通过绕道,即磁层,阻止太阳风直接进入地球。

磁层是
由地球的磁流形成的,它通过向地球周围发射粒子

来保护我们的星球
免受太阳风的影响

当磁层
被新一波的旅行者淹没时,他们有机会继续下到大气层的旅程。

这个事件是日冕物质抛射

,它发生在太阳向太阳风中射出

一个巨大的等离子体球时

当其中一个日冕物质抛射
与地球相撞时,

它会压倒磁层
并产生磁暴。

大风暴对磁层施加压力,
直到它突然弹回,

就像过度拉伸的松紧带一样,

将一些绕道而行的
粒子抛向地球。

磁场的收缩带
将它们拖到极光椭圆形,


是北极光和南极光的位置。

在穿越银河系 9300 万英里之后

,太阳的粒子在一些朋友的帮助下终于产生
了耀眼的灯光秀

在地表以上 20 到 200 英里处

,电子和质子
与氧和氮原子相遇

,他们肯定很高兴见到对方。

太阳的粒子比原子高五倍,将
它们的能量提供

给地球的中性
氧原子和氮原子。

当大气中的原子
与粒子接触时,

它们会被激发并发射光子。

光子是
光形式的小能量爆发。

天空中出现的颜色

取决于原子光子的波长。

激发的氧原子产生
绿色和红色,

而激发的氮原子
产生蓝色和深红色。

这些相互作用的集合

是创造
北极光和南极光的原因。

极光最好

在靠近磁
北极和南极的地区在晴朗的夜晚看到。

夜间是理想的,

因为极光
比阳光暗得多

,白天看不到。

记得仰望天空
并阅读太阳的能量模式,

特别是太阳黑子和太阳耀斑,

因为这些将
是预测极光的好指南。