A new way to grow islands and coastlines Skylar Tibbits

For nearly a decade,

my collaborators and I
at the Self-Assembly Lab

have been working on material systems
that transform themselves,

assemble themselves

and adapt to their environment.

From our early work on 4D printing,

where we printed objects,
dipped them underwater,

and they transform,

to our active auxetics that respond
to temperature and sunlight,

to our more recent work on active textiles

that respond to body temperature
and change porosity,

to our rapid liquid printing work

where we print inflatable structures

that morph based on air pressure

and go from one shape to another,

or our self-assembly work

where we dip objects underwater,

they respond to wave energy
and assemble themselves

into precise objects like furniture.

Or, at larger scales,

using wind energy,

we have meter-diameter weather balloons

that assemble in the airspace
above a construction site.

For dangerous environments
or harsh, extreme places

where it’s hard to get
people or equipment,

they can assemble in the airspace,
and as the helium dies,

they then come back to the ground,

and you’re left with a big
space frame structure.

All of this research is about
taking simple materials,

activating them with forces
in their environment –

gravity, wind, waves,
temperature, sunlight –

and getting them to perform,

getting them to transform, assemble, etc.

How do we build smart things

without complex electromechanical devices?

But more recently we were approached
by a group in the Maldives,

and they were interested in taking
some of this research and ways of thinking

and applying it to some
of the challenges that they’ve faced

in terms of climate change.

And the first thing you do

when you’re approached
by someone in the Maldives

is say you want to go on a site visit.

(Laughter)

It is amazing.

So we went there

and I actually walked away
with a really different perspective

on the future of climate change.

Because you would imagine,
you know, the Maldives are sinking.

They’re screwed.
What are they going to do?

But I walked away thinking,
they might be the model,

the future model of the built environment,
where they can adapt and be resilient

rather than our fixed,
man-made infrastructure.

But there’s typically
three main approaches

to sea level rise and climate change.

One of them is that we can do nothing
and we can run away.

And that’s a pretty bad idea.

As more than 40 percent
of the world’s population

is living in coastal areas,

as sea levels rise
and as storms get worse and worse,

we’re going to be
more and more underwater.

So it’s imperative that we solve
this pretty demanding problem.

The second is that we can build barriers.

We can build walls.

The problem here is that
we take a static solution

trying to fight against a superdynamic,
high-energy problem,

and nature is almost always going to win.

So that’s likely not going to work either.

The third approach is using dredging.

So dredging is where you suck up
a bunch of sand from the deep ocean

and you pump it back onto the beaches.

If you go to any beach
around the Northeast or Western Coast,

you’ll see that they use dredging
year after year after year

just to survive.

It’s really not a good solution.

In the Maldives, they do the same thing,
and they can build an island in a month,

a brand new island
they build from dredging.

But it’s really, really bad
for the marine ecosystem,

and then they become addicted to dredging.

They need to do that year after year.

But in the time that it took them
to build that one island,

three sandbars built themselves,

and these are massive amounts of sand

so big you can park your boat on it,

and this is what’s called a site visit.

It’s really hard work.

(Laughter)

In Boston winters.

This is massive amounts of sand
that naturally accumulates

just based on the forces of the waves

and the ocean topography.

So we started to study that.
Why do sandbars form?

If we could tap into that,

we could understand it
and we could utilize it.

It’s based on the amount
of energy in the ocean

and the topography in the landscape
that promotes sand accumulation.

So what we’re proposing
is to work with the forces of nature

to build rather than destroy,

and in my lab at MIT,
we set up a wave tank,

a big tank that’s pumping waves,

and we placed geometries underwater.

We tried all sorts
of different geometries.

The waves interact with the geometry,

and then create turbulence
and start to accumulate the sand

so the sand starts to form
these sandbars on their own.

Here’s an aerial view.

On the left-hand side,
you’ll see the beach that’s growing.

In the middle you’ll see
the sandbar that formed.

So these are geometries that collaborate
with the force of the wave to build.

We then started to fabricate one.
This was in February in Boston.

We have large rolls of canvas.

It’s a biodegradable material,

it’s super cheap, easy to work with.

We then sew it into these large bladders,

and then we flew over there.

And I know what you’re thinking.
This is not the Fyre Festival.

(Laughter)

This is real life. It’s real.

And we flew there with these
canvas bladders in our suitcases,

we got sunburned
because it was Boston winter,

and then we filled them with sand
and we placed them underwater.

These are exactly the same geometries
that you saw in the tank,

they’re just human scale.

Large objects filled with sand,

we’d place them underwater,
they’re just really simple geometries.

In the front of them,
you’ll see it’s clear water.

The waves are crashing over.

It’s quite clear.

And then on the backside,
there’s turbulence.

The water and the sand is mixing up.

It’s causing sediment transport,
and then the sand is accumulating.

You’ll see some friendly stingrays
here that visited us.

On the left is day one,
the right is day three.

You’ll see the sand ripples
in the light areas

where the sand is accumulating

just after two days.

So this was last February,
and it’s very much ongoing work.

This is just in the beginning
of this research.

Over the next year and longer,

we’re going to be studying this
through satellite imagery

and bathymetry data

to understand what the short-term
and long-term impacts are

of natural sand accumulation
in the environment.

And the bigger vision, though,

is that we want to build
submersible geometries,

almost like submarines
that we can sink and float.

Like adaptable artificial reefs,

you could deploy them

if there’s a storm coming
from one direction or another

or if the seasons are changing,

you can use these
adaptable reef structures

to use the force of the waves
to accumulate sand.

And we think this could be used
in many coastal regions

and many island nations around the world.

But when we think about building
smarter environments,

think of smarter buildings
or smarter cars or smarter clothing,

that typically means adding more power,

more batteries, more devices,
more cost, more complexity

and ultimately more failure.

So we’re always trying to think about
how do we build smarter things with less?

How do we build smarter things
that are simple?

And so what we’re proposing at the lab
and with this project specifically

is to use simple materials like sand

that collaborates with forces
in the environment like waves

to accumulate and adapt.

And we’d like to work with you,
collaborate with us, to develop this,

to scale it and apply
this way of thinking.

We think it’s a different
model for climate change,

one that’s about adaptation and resilience

rather than resistance and fear.

So help us turn natural destruction
into natural construction.

Thank you.

(Applause)

近十年来,

我和我
在自组装实验室的合作者

一直致力于研究
能够自我改造、

自我组装

并适应环境的材料系统。

从我们早期的 4D 打印工作

,我们打印物体,
将它们浸入水下,

然后它们转变,

到我们对温度和阳光作出反应的活性拉胀剂

再到我们最近在

对体温
和改变孔隙率作出反应的活性纺织品方面的工作,

到 我们的快速液体打印工作

是打印可

根据气压变形

并从一种形状变为另一种形状的充气结构,

或者

我们将物体浸入水下的自组装工作,

它们响应波能
并将自身组装

成精确的物体,如家具。

或者,在更大的范围内,

利用风能,

我们

在建筑工地上方的空域中组装一米直径的气象气球

对于危险的环境
或严酷、极端的

地方,
人员或设备难以到达,

它们可以在空域中集结
,当氦气耗尽时,

它们会回到地面,

留下一个大
空间框架结构。

所有这些研究都是关于
采用简单的材料,

利用
环境中的力(

重力、风、波浪、
温度、阳光)激活它们,

并让它们发挥作用,

让它们变形、组装等。

我们如何构建智能

没有复杂机电设备的东西?

但最近
,马尔代夫的一个小组与我们接洽

,他们有兴趣将
其中的一些研究和思维

方式应用于他们

在气候变化方面面临的一些挑战。

当你
在马尔代夫被某人联系时,你做的第一件事

就是说你想去实地考察。

(笑声

) 太神奇了。

所以我们去了

那里,实际上我

对气候变化的未来有着截然不同的看法。

因为你会想象,
你知道,马尔代夫正在下沉。

他们搞砸了。
他们将要做什么?

但我走开时想,
它们可能是模型,

是建成环境的未来模型,在
那里它们可以适应并具有弹性,

而不是我们固定
的人造基础设施。

但通常有
三种主要的方法

来应对海平面上升和气候变化。

其中之一是我们无能为力
,我们可以逃跑。

这是一个非常糟糕的主意。

由于世界上超过 40%

人口生活在沿海地区,

随着海平面上升
和风暴越来越严重,

我们将
越来越多地在水下。

因此,我们必须解决
这个非常苛刻的问题。

第二是我们可以建立障碍。

我们可以建墙。

这里的问题是,
我们采用静态解决方案

试图对抗超动力、
高能量问题,

而大自然几乎总是会获胜。

所以这也可能行不通。

第三种方法是使用疏浚。

所以疏浚就是你
从深海中吸出一堆沙子,

然后把它泵回海滩。

如果你去
东北或西海岸附近的任何海滩,

你会看到他们
年复一年

地使用疏浚来生存。

这真的不是一个好的解决方案。

在马尔代夫,他们做同样的事情
,他们可以在一个月内建造一个岛屿,一个

他们通过疏浚建造的全新岛屿。

但这
对海洋生态系统非常非常不利,

然后他们就沉迷于疏浚。

他们需要年复一年地这样做。

但是在
他们建造那个岛的时间里,

三个沙洲都是自己建造的

,这些

沙子很大,你可以把船停在上面

,这就是所谓的实地考察。

这真的很辛苦。

(笑声)

在波士顿的冬天。

这是大量的沙子

仅根据海浪

和海洋地形的力量自然积累。

所以我们开始研究那个。
为什么会形成沙洲?

如果我们可以利用它,

我们就可以理解它
并且我们可以利用它。

它基于
海洋中的能量数量


促进沙子堆积的地形地貌。

所以我们的提议
是利用自然的力量

来建造而不是破坏

,在我在麻省理工学院的实验室里,
我们建立了一个波浪池,

一个抽浪的大水池

,我们在水下放置了几何图形。

我们尝试了
各种不同的几何形状。

波浪与几何形状相互作用,

然后产生湍流
并开始积聚沙子,

因此沙子开始
自行形成这些沙洲。

这是一张鸟瞰图。

在左侧,
您会看到正在生长的海滩。

在中间你会
看到形成的沙洲。

因此,这些几何形状
与波浪的力量协同构建。

然后我们开始制作一个。
这是二月份在波士顿。

我们有大卷帆布。

它是一种可生物降解的材料

,超级便宜,易于使用。

然后我们把它缝进这些大气囊里

,然后我们飞过去。

我知道你在想什么。
这不是 Fyre 节。

(笑声)

这就是现实生活。 它是真实的。

我们带着这些帆布气囊飞到那里,

因为那是波士顿的冬天,我们被晒伤了

,然后我们把它们装满沙子,然后把它们
放在水下。

这些与
您在水箱中看到的几何形状完全相同,

它们只是人体尺度。

装满沙子的大型物体,

我们会将它们放在水下,
它们只是非常简单的几何形状。

在他们的面前,
你会看到它是清澈的水。

海浪正在翻滚。

这很清楚。

然后在背面,
有湍流。

水和沙子混在一起了。

它导致泥沙运输,
然后沙子堆积。

你会在这里看到一些友好的黄貂鱼
来拜访我们。

左边是第一天
,右边是第三天。 两天后,

您会在沙子堆积
的浅色区域

看到沙子波纹

这是去年 2 月的事
,这是非常持续的工作。

这只是
这项研究的开始。

在接下来的一年甚至更长的时间里,

我们将
通过卫星图像

和测深数据

来研究这一点,以了解环境

中天然沙子积累
的短期和长期影响。

然而,更大的愿景

是我们想要建造可
潜水的几何形状,

就像
我们可以沉没和漂浮的潜艇一样。

就像适应性强的人工鱼礁一样,

如果有
来自某个方向或另一个方向的风暴

或季节变化,

您可以部署它们,您可以使用这些
适应性强的珊瑚礁结构

来利用海浪的力量
来积沙。

我们认为这可以用于世界
上许多沿海地区

和许多岛国。

但是当我们考虑构建
更智能的环境时,

想想更智能的建筑
、更智能的汽车或更智能的服装,

这通常意味着增加更多的电力、

更多的电池、更多的设备、
更多的成本、更多的复杂性

以及最终更多的故障。

所以我们一直在思考
如何用更少的资源构建更智能的东西?

我们如何构建更智能
且简单的东西?

因此,我们在
实验室特别是这个项目中提出的建议

是使用简单的材料,如沙子

,与
环境中的力(如波浪)协作

来积累和适应。

我们愿意与您
合作,与我们合作,开发

、扩展并应用
这种思维方式。

我们认为这是
气候变化的

另一种模式,一种关于适应和复原力

而不是抵抗和恐惧的模式。

因此,请帮助我们将自然破坏
转变为自然建设。

谢谢你。

(掌声)