What you need to know about CRISPR Ellen Jorgensen

So, has everybody heard of CRISPR?

I would be shocked if you hadn’t.

This is a technology –
it’s for genome editing –

and it’s so versatile and so controversial

that it’s sparking all sorts
of really interesting conversations.

Should we bring back the woolly mammoth?

Should we edit a human embryo?

And my personal favorite:

How can we justify
wiping out an entire species

that we consider harmful to humans

off the face of the Earth,

using this technology?

This type of science
is moving much faster

than the regulatory mechanisms
that govern it.

And so, for the past six years,

I’ve made it my personal mission

to make sure that as many people
as possible understand

these types of technologies
and their implications.

Now, CRISPR has been the subject
of a huge media hype,

and the words that are used most often
are “easy” and “cheap.”

So what I want to do is drill down
a little bit deeper

and look into some of the myths
and the realities around CRISPR.

If you’re trying to CRISPR a genome,

the first thing that you have to do
is damage the DNA.

The damage comes in the form
of a double-strand break

through the double helix.

And then the cellular repair
processes kick in,

and then we convince
those repair processes

to make the edit that we want,

and not a natural edit.

That’s how it works.

It’s a two-part system.

You’ve got a Cas9 protein
and something called a guide RNA.

I like to think of it as a guided missile.

So the Cas9 –
I love to anthropomorphize –

so the Cas9 is kind of this Pac-Man thing

that wants to chew DNA,

and the guide RNA is the leash
that’s keeping it out of the genome

until it finds the exact spot
where it matches.

And the combination of those two
is called CRISPR.

It’s a system that we stole

from an ancient, ancient
bacterial immune system.

The part that’s amazing about it
is that the guide RNA,

only 20 letters of it,

are what target the system.

This is really easy to design,

and it’s really cheap to buy.

So that’s the part
that is modular in the system;

everything else stays the same.

This makes it a remarkably easy
and powerful system to use.

The guide RNA and the Cas9
protein complex together

go bouncing along the genome,

and when they find a spot
where the guide RNA matches,

then it inserts between the two strands
of the double helix,

it rips them apart,

that triggers the Cas9 protein to cut,

and all of a sudden,

you’ve got a cell that’s in total panic

because now it’s got a piece
of DNA that’s broken.

What does it do?

It calls its first responders.

There are two major repair pathways.

The first just takes the DNA
and shoves the two pieces back together.

This isn’t a very efficient system,

because what happens is
sometimes a base drops out

or a base is added.

It’s an OK way to maybe, like,
knock out a gene,

but it’s not the way that we really want
to do genome editing.

The second repair pathway
is a lot more interesting.

In this repair pathway,

it takes a homologous piece of DNA.

And now mind you, in a diploid
organism like people,

we’ve got one copy of our genome
from our mom and one from our dad,

so if one gets damaged,

it can use the other
chromosome to repair it.

So that’s where this comes from.

The repair is made,

and now the genome is safe again.

The way that we can hijack this

is we can feed it a false piece of DNA,

a piece that has homology on both ends

but is different in the middle.

So now, you can put
whatever you want in the center

and the cell gets fooled.

So you can change a letter,

you can take letters out,

but most importantly,
you can stuff new DNA in,

kind of like a Trojan horse.

CRISPR is going to be amazing,

in terms of the number of different
scientific advances

that it’s going to catalyze.

The thing that’s special about it
is this modular targeting system.

I mean, we’ve been shoving DNA
into organisms for years, right?

But because of the modular
targeting system,

we can actually put it
exactly where we want it.

The thing is that there’s
a lot of talk about it being cheap

and it being easy.

And I run a community lab.

I’m starting to get emails from people
that say stuff like,

“Hey, can I come to your open night

and, like, maybe use CRISPR
and engineer my genome?”

(Laugher)

Like, seriously.

I’m, “No, you can’t.”

(Laughter)

“But I’ve heard it’s cheap.
I’ve heard it’s easy.”

We’re going to explore that a little bit.

So, how cheap is it?

Yeah, it is cheap in comparison.

It’s going to take the cost of the average
materials for an experiment

from thousands of dollars
to hundreds of dollars,

and it cuts the time a lot, too.

It can cut it from weeks to days.

That’s great.

You still need a professional lab
to do the work in;

you’re not going to do anything meaningful
outside of a professional lab.

I mean, don’t listen to anyone who says

you can do this sort of stuff
on your kitchen table.

It’s really not easy
to do this kind of work.

Not to mention,
there’s a patent battle going on,

so even if you do invent something,

the Broad Institute and UC Berkeley
are in this incredible patent battle.

It’s really fascinating
to watch it happen,

because they’re accusing each other
of fraudulent claims

and then they’ve got people saying,

“Oh, well, I signed
my notebook here or there.”

This isn’t going to be settled for years.

And when it is,

you can bet you’re going to pay someone
a really hefty licensing fee

in order to use this stuff.

So, is it really cheap?

Well, it’s cheap if you’re doing
basic research and you’ve got a lab.

How about easy?
Let’s look at that claim.

The devil is always in the details.

We don’t really know
that much about cells.

They’re still kind of black boxes.

For example, we don’t know
why some guide RNAs work really well

and some guide RNAs don’t.

We don’t know why some cells
want to do one repair pathway

and some cells would rather do the other.

And besides that,

there’s the whole problem
of getting the system into the cell

in the first place.

In a petri dish, that’s not that hard,

but if you’re trying to do it
on a whole organism,

it gets really tricky.

It’s OK if you use something
like blood or bone marrow –

those are the targets
of a lot of research now.

There was a great story
of some little girl

who they saved from leukemia

by taking the blood out, editing it,
and putting it back

with a precursor of CRISPR.

And this is a line of research
that people are going to do.

But right now, if you want to get
into the whole body,

you’re probably going
to have to use a virus.

So you take the virus,
you put the CRISPR into it,

you let the virus infect the cell.

But now you’ve got this virus in there,

and we don’t know what the long-term
effects of that are.

Plus, CRISPR has some off-target effects,

a very small percentage,
but they’re still there.

What’s going to happen
over time with that?

These are not trivial questions,

and there are scientists
that are trying to solve them,

and they will eventually,
hopefully, be solved.

But it ain’t plug-and-play,
not by a long shot.

So: Is it really easy?

Well, if you spend a few years
working it out in your particular system,

yes, it is.

Now the other thing is,

we don’t really know that much about how
to make a particular thing happen

by changing particular spots
in the genome.

We’re a long way away from figuring out

how to give a pig wings, for example.

Or even an extra leg – I’d settle
for an extra leg.

That would be kind of cool, right?

But what is happening

is that CRISPR is being used
by thousands and thousands of scientists

to do really, really important work,

like making better models
of diseases in animals, for example,

or for taking pathways
that produce valuable chemicals

and getting them into industrial
production in fermentation vats,

or even doing really basic research
on what genes do.

This is the story of CRISPR
we should be telling,

and I don’t like it
that the flashier aspects of it

are drowning all of this out.

Lots of scientists did a lot of work
to make CRISPR happen,

and what’s interesting to me

is that these scientists
are being supported by our society.

Think about it.

We’ve got an infrastructure that allows
a certain percentage of people

to spend all their time doing research.

That makes us all the inventors of CRISPR,

and I would say that makes us all
the shepherds of CRISPR.

We all have a responsibility.

So I would urge you to really learn
about these types of technologies,

because, really, only in that way

are we going to be able to guide
the development of these technologies,

the use of these technologies

and make sure that, in the end,
it’s a positive outcome –

for both the planet and for us.

Thanks.

(Applause)

那么,大家都听说过CRISPR吗?

如果你没有,我会感到震惊。

这是一项技术——
它用于基因组编辑

——它用途广泛且极具争议性,

以至于引发了
各种非常有趣的对话。

我们应该带回长毛猛犸象吗?

我们应该编辑人类胚胎吗?

我个人最喜欢的是:

我们如何证明使用这项技术从地球上
消灭

我们认为对人类有害的整个物种是合理的

这类科学的发展
速度

比管理它的监管机制快得多

因此,在过去的六年里,

我的个人使命

是确保尽可能多的人
了解

这些类型的技术
及其影响。

现在,CRISPR 已经成为
媒体大肆炒作的主题

,使用频率最高的词
是“简单”和“便宜”。

所以我想做的是
更深入地研究

并研究一些关于 CRISPR 的神话
和现实。

如果你想对基因组进行 CRISPR 编辑

,你要做的第一件事
就是破坏 DNA。

损害以
双链

突破双螺旋的形式出现。

然后细胞修复
过程开始,

然后我们说服
这些修复过程

进行我们想要的编辑,

而不是自然的编辑。

这就是它的工作原理。

这是一个两部分的系统。

你有一个 Cas9 蛋白
和一种叫做指导 RNA 的东西。

我喜欢把它想象成导弹。

所以 Cas9——
我喜欢拟人化——

所以 Cas9 有点像吃豆人的东西

,它想要咀嚼 DNA,

而引导 RNA 是
把它挡在基因组之外的皮带,

直到它找到它所在的确切
位置 火柴。

这两者的结合
被称为CRISPR。

这是我们

从古老的
细菌免疫系统中窃取的系统。

令人惊奇的
是,

只有 20 个字母的引导 RNA

是针对系统的。

这真的很容易设计,

而且买起来真的很便宜。

这就是系统中模块化的部分;

其他一切都保持不变。

这使它成为一个非常
容易使用且功能强大的系统。

引导 RNA 和 Cas9
蛋白复合物

一起沿着基因组弹跳

,当它们
找到引导 RNA 匹配的位点时

,它会插入双螺旋的两条链之间

将它们撕裂,

从而触发 Cas9 蛋白 切割

,突然之间,

你有一个完全恐慌的细胞,

因为现在它有
一段DNA被破坏了。

它有什么作用?

它呼叫它的第一响应者。

有两种主要的修复途径。

第一个只是取出 DNA
并将两个部分重新组合在一起。

这不是一个非常有效的系统,

因为
有时会发生碱基丢失

或添加碱基的情况。

敲除一个基因可能是一种不错

的方式,但这不是我们真正
想要进行基因组编辑的方式。

第二个修复途径
要有趣得多。

在这个修复途径中,

它需要一段同源的 DNA。

现在请注意,在
像人类这样的二倍体生物体中,

我们从妈妈那里得到一份基因组
,从爸爸那里得到一份,

所以如果一个被损坏,

它可以使用另
一条染色体来修复它。

这就是它的来源。

修复完成了

,现在基因组又安全了。

我们可以劫持它的方法

是,我们可以给它喂一段假的 DNA,

一段两端同源

但中间不同的 DNA。

所以现在,你可以把
任何你想要的东西放在中心

,细胞就会被愚弄。

所以你可以改变一个字母,

你可以取出字母,

但最重要的是,
你可以把新的 DNA 塞进去,

有点像特洛伊木马。

就其将催化的不同科学进步的数量而言,CRISPR 将是惊人的

它的特别之处
在于这个模块化目标系统。

我的意思是,多年来我们一直在将 DNA
植入生物体中,对吧?

但是由于模块化
目标系统,

我们实际上可以将
它准确地放在我们想要的位置。

问题是
有很多关于它便宜

且容易的讨论。

我经营着一个社区实验室。

我开始收到一些人发来的电子邮件,他们
说:

“嘿,我可以参加你的开放之夜吗

,比如,也许可以使用 CRISPR
并设计我的基因组?”

(笑声)

说真的。

我是,“不,你不能。”

(笑声)

“但我听说它很便宜。
我听说它很容易。”

我们将对此进行一些探索。

那么,到底有多便宜?

是的,比较便宜。

一个实验的平均材料成本

将从数千美元降低
到数百美元

,而且时间也大大缩短。

它可以将它从几周缩短到几天。

那太棒了。

你仍然需要一个专业的实验室
来做这项工作;

你不会在专业实验室之外做任何有意义的事情

我的意思是,不要听任何人说

你可以
在厨房的桌子上做这种事情。

做这样的工作真的不容易。

更不用说,
正在进行一场专利大战,

所以即使你确实发明了一些东西

,布罗德研究所和加州大学伯克利分校
都在这场令人难以置信的专利大战中。

看着它发生真的很有趣,

因为他们互相指责对方
的欺诈性声明

,然后他们让人们说,

“哦,好吧,我
在这里或那里签署了我的笔记本。”

这几年都不会解决。

如果是这样,

你可以打赌你会付给某人
一大笔许可

费才能使用这些东西。

那么,真的便宜吗?

好吧,如果你在做
基础研究并且你有一个实验室,那就很便宜了。

怎么轻松?
让我们看看这个说法。

魔鬼总是在细节中。

我们
对细胞知之甚少。

它们仍然是一种黑匣子。

例如,我们不知道
为什么有些向导 RNA 工作得很好,

而有些向导 RNA 却不行。

我们不知道为什么有些细胞
想做一种修复途径,

而有些细胞宁愿做另一种。

除此之外,首先

要让系统进入细胞

是整个问题。

在培养皿中,这并不难,

但如果你想
在整个生物体上做这件事,

那真的很棘手。

如果你使用
血液或骨髓之类的东西也没关系——

这些是
现在很多研究的目标。

有一个很棒的故事

,他们

通过取出血液、编辑并

用 CRISPR 的前身将其放回,从白血病中拯救了一个小女孩。


是人们将要做的一系列研究。

但是现在,如果你想
进入整个身体,

你可能
不得不使用病毒。

所以你拿病毒
,把CRISPR放进去

,让病毒感染细胞。

但是现在你已经感染了这种病毒

,我们不知道它的长期
影响是什么。

另外,CRISPR 有一些脱靶效应,

比例非常小,
但它们仍然存在。

随着时间的推移会发生什么?

这些不是微不足道的问题

,有
科学家正在努力解决这些问题

,他们最终
有望得到解决。

但它不是即插即用的,
不是很长的镜头。

所以:真的很容易吗?

好吧,如果您花几年
时间在您的特定系统中解决

它,是的,确实如此。

现在另一件事是,

我们对如何

通过改变
基因组中的特定点来实现特定的事情知之甚少。

例如,我们离弄清楚

如何给猪翅膀做准备还有很长的路要走。

或者甚至是一条额外的腿——我会
满足于一条额外的腿。

那会很酷,对吧?

但正在发生的事情


,成千上万的科学家正在使用 CRISPR

来做非常非常重要的工作

,例如在动物身上制作更好的疾病模型,

或者采用
产生有价值化学物质的途径

并将其投入工业
生产 在发酵桶中,

甚至
对基因的作用进行真正的基础研究。

这就是我们应该讲述的 CRISPR 的故事

,我不喜欢
它的华丽

方面淹没了这一切。

许多科学家
为实现 CRISPR 做了很多工作

,我感兴趣的

是这些科学家
得到了我们社会的支持。

想想看。

我们有一个基础设施,允许
一定比例的人

把所有时间都花在研究上。

这使我们成为 CRISPR 的所有发明者

,我想说这使我们
成为 CRISPR 的所有牧羊人。

我们都有责任。

所以我敦促你真正
了解这些类型的技术,

因为,真的,只有

这样,我们才能指导
这些技术的发展,

这些技术的使用,

并确保最终,
这是一个积极的结果——

对地球和我们来说都是如此。

谢谢。

(掌声)