Logarithms Explained Steve Kelly

How does the difference between

point 0000000398 and

point 00000000398

cause one to have red eyes after swimming?

To answer this, we first need a way of

dealing with rather small numbers,

or in some cases extremely large numbers.

This leads us
to the concept of logarithms.

Well, what are logarithms?

Let’s take the base number, b,

and raise it to a power, p,

like 2 to the 3rd power,

and have it equal a number n.

We get an exponential equation:
b raised to the p power, equals n.

In our example, that’d be 2 raised

to the 3rd power, equals 8.

The exponent p is said to be

the logarithm of the number n.

Most of the time this would be written:

“log, base b, of a number
equals p, the power.”

This is starting to sound a bit confusing
with all the variables,

so let’s show this with an example.

What is the value of

log base 10 of 10,000?

The same question could be asked
using exponents:

“10 raised to what power is 10,000?”

Well, 10 to the 4th is 10,000.

So, log base 10 of 10,000

must equal 4.

This example can also be completed
very simply on a scientific calculator.

Log base 10 is used so frequently

in the sciences

that it has the honor of having
its own button on most calculators.

If the calculator will figure out
logs for me,

why study them?

Just a quick reminder:

the log button only computes
logarithms of base 10.

What if you want to go into
computer science

and need to understand base 2?

So what is log base 2 of 64?

In other words,
2 raised to what power is 64?

Well, use your fingers.
2, 4, 8, 16, 32, 64.

So log base 2 of 64 must equal 6.

So what does this have to do
with my eyes turning red

in some swimming pools

and not others?

Well, it leads us into an interesting

use of logarithms in chemistry:

finding the pH of water samples.

pH tells us how acidic
or basic a sample is,

and can be calculated with the formula:

pH equals negative log base 10 of
the hydrogen ion concentration, or H plus.

We can find the pH of water samples

with hydrogen ion concentration of
point 0000000398

and point 00000000398

quickly on a calculator.

Punch: negative log
of each of those numbers,

and you’ll see the pH’s are 7.4 and 8.4.

Since the tears in our eyes
have a pH of about 7.4,

the H plus concentration of .0000000398

will feel nice on your eyes,

but the pH of 8.4
will make you feel itchy and red.

It’s easy to remember logarithms
“log base b of some number n equals p”

by repeating: “The base raised
to what power equals the number?”

“The BASE raised to what POWER
equals the NUMBER?”

So now we know
logarithms are very powerful

when dealing with
extremely small or large numbers.

Logarithms can even be used

instead of eyedrops after swimming.

点 0000000398 和

点 00000000398 之间的差异如何

导致游泳后眼睛发红?

为了回答这个问题,我们首先需要一种方法来

处理相当小的数字,

或者在某些情况下非常大的数字。

这就引出
了对数的概念。

那么,什么是对数?

让我们取底数 b,

然后将其提升为 p 次方,

例如 2 的 3 次方,

并使其等于数字 n。

我们得到一个指数方程:
b 的 p 次方,等于 n。

在我们的示例中,这将是 2

的 3 次方,等于

8。指数 p 被称为

数字 n 的对数。

大多数情况下会这样写:

“log, base b, of a number
equals p, the power.”

这开始听起来有点
混淆所有变量,

所以让我们用一个例子来说明这一点。

10,000 的以 10 为底的对数的值是多少?

可以使用指数提出同样的问题

“10 的幂是 10,000?”

嗯,10 到 4 是 10,000。

因此,10,000 的以 10 为底的对数

必须等于 4。

这个例子也可以
在科学计算器上非常简单地完成。

以 10 为底的

对数在科学

中使用如此频繁,以至于它有幸
在大多数计算器上都有自己的按钮。

如果计算器会
为我计算日志,

为什么要研究它们?

快速提醒

一下:log 按钮仅计算
以 10 为底的对数。

如果您想进入
计算机科学

并需要了解以 2 为底的对数怎么办?

那么什么是 64 的对数基数 2?

换句话说,
2 的 64 次方是多少?

好吧,用你的手指。
2, 4, 8, 16, 32, 64。

所以 64 的对数基数 2 必须等于 6。

那么这
与我的眼睛

在某些游泳池变红

而不是其他游泳池有什么关系?

好吧,它引导我们进入

化学中对数的一个有趣用途:

找出水样的 pH 值。

pH 告诉我们
样品的酸性或碱性

,可以使用以下公式计算:

pH 等于氢离子浓度的负对数,以 10 为
底,或 H+。

我们可以在计算器上快速找到

氢离子浓度为

0000000398点和00000000398点的水样的pH

值。

冲床:
每个数字的负对数

,你会看到 pH 值为 7.4 和 8.4。

由于我们眼睛里的泪水
的pH值

约为7.4,0.0000000398的H+浓度

会让你的眼睛感觉很好,

但8.4的pH值
会让你感到发痒和发红。 通过重复以下内容

很容易记住对数
“某个数 n 的 log 底 b 等于 p”

:“底数
的幂等于该数?”

“BASE 提升到 POWER
等于 NUMBER 的多少?”

所以现在我们知道
对数

在处理
极小或极大的数字时非常强大。 游泳后

甚至可以用对数

代替眼药水。