Meet the dazzling flying machines of the future Raffaello DAndrea

What started as a platform for hobbyists

is poised to become
a multibillion-dollar industry.

Inspection, environmental monitoring,
photography and film and journalism:

these are some of the potential
applications for commercial drones,

and their enablers
are the capabilities being developed

at research facilities around the world.

For example, before aerial
package delivery

entered our social consciousness,

an autonomous fleet of flying machines
built a six-meter-tall tower

composed of 1,500 bricks

in front of a live audience
at the FRAC Centre in France,

and several years ago,
they started to fly with ropes.

By tethering flying machines,

they can achieve high speeds
and accelerations in very tight spaces.

They can also autonomously build
tensile structures.

Skills learned include how to carry loads,

how to cope with disturbances,

and in general, how to interact
with the physical world.

Today we want to show you some
new projects that we’ve been working on.

Their aim is to push the boundary
of what can be achieved

with autonomous flight.

Now, for a system to function
autonomously,

it must collectively know the location
of its mobile objects in space.

Back at our lab at ETH Zurich,

we often use external cameras
to locate objects,

which then allows us to focus our efforts

on the rapid development
of highly dynamic tasks.

For the demos you will see today, however,

we will use new localization technology
developed by Verity Studios,

a spin-off from our lab.

There are no external cameras.

Each flying machine uses onboard sensors
to determine its location in space

and onboard computation
to determine what its actions should be.

The only external commands
are high-level ones

such as “take off” and “land.”

This is a so-called tail-sitter.

It’s an aircraft that tries
to have its cake and eat it.

Like other fixed-wing aircraft,
it is efficient in forward flight,

much more so than helicopters
and variations thereof.

Unlike most other
fixed-wing aircraft, however,

it is capable of hovering,

which has huge advantages
for takeoff, landing

and general versatility.

There is no free lunch, unfortunately.

One of the limitations with tail-sitters

is that they’re susceptible
to disturbances such as wind gusts.

We’re developing new control
architectures and algorithms

that address this limitation.

The idea is for the aircraft to recover

no matter what state it finds itself in,

and through practice,
improve its performance over time.

(Applause)

OK.

When doing research,

we often ask ourselves
fundamental abstract questions

that try to get at the heart of a matter.

For example, one such question would be,

what is the minimum number of moving parts
needed for controlled flight?

Now, there are practical reasons

why you may want to know
the answer to such a question.

Helicopters, for example,

are affectionately known
as machines with a thousand moving parts

all conspiring to do you bodily harm.

It turns out that decades ago,

skilled pilots were able to fly
remote-controlled aircraft

that had only two moving parts:

a propeller and a tail rudder.

We recently discovered
that it could be done with just one.

This is the monospinner,

the world’s mechanically simplest
controllable flying machine,

invented just a few months ago.

It has only one moving part, a propeller.

It has no flaps, no hinges, no ailerons,

no other actuators,
no other control surfaces,

just a simple propeller.

Even though it’s mechanically simple,

there’s a lot going on
in its little electronic brain

to allow it to fly in a stable fashion
and to move anywhere it wants in space.

Even so, it doesn’t yet have

the sophisticated algorithms
of the tail-sitter,

which means that in order
to get it to fly,

I have to throw it just right.

And because the probability
of me throwing it just right is very low,

given everybody watching me,

what we’re going to do instead

is show you a video
that we shot last night.

(Laughter)

(Applause)

If the monospinner
is an exercise in frugality,

this machine here, the omnicopter,
with its eight propellers,

is an exercise in excess.

What can you do with all this surplus?

The thing to notice
is that it is highly symmetric.

As a result, it is ambivalent
to orientation.

This gives it an extraordinary capability.

It can move anywhere it wants in space

irrespective of where it is facing

and even of how it is rotating.

It has its own complexities,

mainly having to do
with the interacting flows

from its eight propellers.

Some of this can be modeled,
while the rest can be learned on the fly.

Let’s take a look.

(Applause)

If flying machines are going
to enter part of our daily lives,

they will need to become
extremely safe and reliable.

This machine over here

is actually two separate
two-propeller flying machines.

This one wants to spin clockwise.

This other one wants
to spin counterclockwise.

When you put them together,

they behave like one
high-performance quadrocopter.

If anything goes wrong, however –

a motor fails, a propeller fails,
electronics, even a battery pack –

the machine can still fly,
albeit in a degraded fashion.

We’re going to demonstrate this to you now
by disabling one of its halves.

(Applause)

This last demonstration

is an exploration of synthetic swarms.

The large number of autonomous,
coordinated entities

offers a new palette
for aesthetic expression.

We’ve taken commercially available
micro quadcopters,

each weighing less
than a slice of bread, by the way,

and outfitted them
with our localization technology

and custom algorithms.

Because each unit
knows where it is in space

and is self-controlled,

there is really no limit to their number.

(Applause)

(Applause)

(Applause)

Hopefully, these demonstrations
will motivate you to dream up

new revolutionary roles
for flying machines.

That ultrasafe one over there for example

has aspirations to become
a flying lampshade on Broadway.

(Laughter)

The reality is that it is
difficult to predict

the impact of nascent technology.

And for folks like us, the real reward
is the journey and the act of creation.

It’s a continual reminder

of how wonderful and magical
the universe we live in is,

that it allows creative, clever creatures

to sculpt it in such spectacular ways.

The fact that this technology

has such huge commercial
and economic potential

is just icing on the cake.

Thank you.

(Applause)

最初作为业余爱好者的平台,

现在已经准备好成为
一个价值数十亿美元的产业。

检查、环境监测、
摄影、电影和新闻:

这些是
商用无人机的一些潜在应用

,它们的推动力

世界各地研究机构正在开发的能力。

例如,在航空
包裹递送

进入我们的社会意识之前,

一支由飞行机器组成的自主机队在法国 FRAC 中心的现场观众面前
建造了一座

由 1500 块砖块组成的 6 米高的塔

,几年前,
他们开始 用绳索飞行。

通过束缚飞行器,

它们可以
在非常狭小的空间内实现高速和加速。

他们还可以自主构建
拉伸结构。

学到的技能包括如何搬运负载、

如何应对干扰,

以及如何
与物理世界互动。

今天,我们想向您
展示我们一直在进行的一些新项目。

他们的目标是突破
自主飞行所能达到

的极限。

现在,要让一个系统
自主运行,

它必须集体知道
其移动物体在空间中的位置。

回到我们在苏黎世联邦理工学院的实验室,

我们经常使用外部摄像
头来定位物体,

这使我们能够将精力

集中在快速
开发高动态任务上。

但是,对于您今天将看到的演示,

我们将使用
Verity Studios 开发的新本地化技术,

该技术是我们实验室的衍生产品。

没有外接摄像头。

每台飞行器都使用机载传感器
来确定其在太空中的位置,

并使用机载计算
来确定其应采取的行动。

唯一的外部命令

是“起飞”和“着陆”等高级命令。

这就是所谓的尾随者。

这是一架
试图获得蛋糕并吃掉它的飞机。

与其他固定翼飞机一样,
它在向前飞行时效率更高,

远高于直升机
及其变体。 然而,

与大多数其他
固定翼飞机不同的是,

它能够悬停,

在起飞、着陆

和通用性方面具有巨大优势。

不幸的是,没有免费的午餐。

尾随者的限制之一

是它们容易
受到阵风等干扰。

我们正在开发新的控制
架构和算法

来解决这个限制。

这个想法是让飞机

无论发现自己处于何种状态都能恢复,

并通过实践,
随着时间的推移提高其性能。

(掌声)

好的。

在进行研究时,

我们经常会问自己一些
基本的抽象问题

,试图找到问题的核心。

例如,一个这样的问题是,受控飞行

所需的运动部件的最少数量是
多少?

现在,

您可能想知道
这样一个问题的答案是有实际原因的。

例如,直升机

被亲切地
称为具有一千个活动部件的机器,

所有部件都合谋对你造成身体伤害。

事实证明,几十年前,

熟练的飞行员能够驾驶

只有两个运动部件的遥控飞机

:螺旋桨和尾舵。

我们最近
发现只需一个即可完成。

这就是几个月前发明

的世界上机械最简单的
可控飞行器 monospinner

它只有一个运动部件,一个螺旋桨。

它没有襟翼,没有铰链,没有副翼,

没有其他执行器,
没有其他控制面,

只有一个简单的螺旋桨。

尽管它的机械结构很简单,但它的

小电子大脑

中有很多东西可以让它以稳定的方式飞行
并在太空中移动到它想要的任何地方。

即便如此,它还没有

tail-sitter的复杂算法,

这意味着
为了让它飞起来,

我必须把它扔得恰到好处。

而且因为
我投得恰到好处的概率非常低,

鉴于每个人都在看着我,

我们要做的

是给你
看我们昨晚拍摄的视频。

(笑声)

(掌声)

如果说单旋翼
是一种节俭的运动

,那么这里的这台机器,全向直升机,
有八个螺旋桨,

就是一种过度的运动。

你能用这些多余的东西做什么?

需要注意
的是它是高度对称的。

因此,它与方向是矛盾的

这赋予了它非凡的能力。

它可以在空间中随心所欲地移动,

无论它面向哪里

,甚至如何旋转。

它有其自身的复杂性,

主要
与八个螺旋桨的相互作用流有关

其中一些可以建模,
而其余的可以动态学习。

让我们来看看。

(掌声)

如果飞行器
要进入我们日常生活的一部分,

它们就需要变得
非常安全和可靠。

这边的这台机器,

其实是两台独立
的双桨飞行器。

这个要顺时针旋转。

这个另一个
想要逆时针旋转。

当你把它们放在一起时,

它们就像一架
高性能四轴飞行器。

然而,如果出现任何问题

——电机出现故障、螺旋桨出现故障、
电子设备甚至电池组出现故障

——机器仍然可以飞行,
尽管速度下降了。

我们现在将通过禁用它的一半来向您展示这一点

(掌声

)最后一个演示

是对合成群的探索。

大量自主、
协调的实体为审美表达

提供了新的调色板
。 顺便说一句,

我们采用了市售的
微型四轴飞行器,每架微型四轴飞行器的

重量都不
到一片面包,

并为它们
配备了我们的定位技术

和定制算法。

因为每个单元都
知道自己在太空中的位置,

并且可以自我控制,

所以他们的数量真的没有限制。

(掌声)

(掌声)

(掌声)

希望这些演示
能激发您为飞行器构想

新的革命性角色

例如,那里的那个超安全的

人渴望成为
百老汇的飞行灯罩。

(笑声

) 现实是
很难预测

新兴技术的影响。

对于像我们这样的人来说,真正的回报
是旅程和创造的行为。

它不断提醒我们生活的宇宙

是多么美妙和神奇

,它允许创造性、聪明的生物

以如此壮观的方式雕刻它。

这项技术

具有如此巨大的商业
和经济潜力

的事实只是锦上添花。

谢谢你。

(掌声)