The jobs well lose to machines and the ones we wont Anthony Goldbloom

So this is my niece.

Her name is Yahli.

She is nine months old.

Her mum is a doctor,
and her dad is a lawyer.

By the time Yahli goes to college,

the jobs her parents do
are going to look dramatically different.

In 2013, researchers at Oxford University
did a study on the future of work.

They concluded that almost one
in every two jobs have a high risk

of being automated by machines.

Machine learning is the technology

that’s responsible for most
of this disruption.

It’s the most powerful branch
of artificial intelligence.

It allows machines to learn from data

and mimic some of the things
that humans can do.

My company, Kaggle, operates
on the cutting edge of machine learning.

We bring together
hundreds of thousands of experts

to solve important problems
for industry and academia.

This gives us a unique perspective
on what machines can do,

what they can’t do

and what jobs they might
automate or threaten.

Machine learning started making its way
into industry in the early ’90s.

It started with relatively simple tasks.

It started with things like assessing
credit risk from loan applications,

sorting the mail by reading
handwritten characters from zip codes.

Over the past few years, we have made
dramatic breakthroughs.

Machine learning is now capable
of far, far more complex tasks.

In 2012, Kaggle challenged its community

to build an algorithm
that could grade high-school essays.

The winning algorithms
were able to match the grades

given by human teachers.

Last year, we issued
an even more difficult challenge.

Can you take images of the eye
and diagnose an eye disease

called diabetic retinopathy?

Again, the winning algorithms
were able to match the diagnoses

given by human ophthalmologists.

Now, given the right data,
machines are going to outperform humans

at tasks like this.

A teacher might read 10,000 essays
over a 40-year career.

An ophthalmologist might see 50,000 eyes.

A machine can read millions of essays
or see millions of eyes

within minutes.

We have no chance of competing
against machines

on frequent, high-volume tasks.

But there are things we can do
that machines can’t do.

Where machines have made
very little progress

is in tackling novel situations.

They can’t handle things
they haven’t seen many times before.

The fundamental limitations
of machine learning

is that it needs to learn
from large volumes of past data.

Now, humans don’t.

We have the ability to connect
seemingly disparate threads

to solve problems we’ve never seen before.

Percy Spencer was a physicist
working on radar during World War II,

when he noticed the magnetron
was melting his chocolate bar.

He was able to connect his understanding
of electromagnetic radiation

with his knowledge of cooking

in order to invent – any guesses? –
the microwave oven.

Now, this is a particularly remarkable
example of creativity.

But this sort of cross-pollination
happens for each of us in small ways

thousands of times per day.

Machines cannot compete with us

when it comes to tackling
novel situations,

and this puts a fundamental limit
on the human tasks

that machines will automate.

So what does this mean
for the future of work?

The future state of any single job lies
in the answer to a single question:

To what extent is that job reducible
to frequent, high-volume tasks,

and to what extent does it involve
tackling novel situations?

On frequent, high-volume tasks,
machines are getting smarter and smarter.

Today they grade essays.
They diagnose certain diseases.

Over coming years,
they’re going to conduct our audits,

and they’re going to read boilerplate
from legal contracts.

Accountants and lawyers are still needed.

They’re going to be needed
for complex tax structuring,

for pathbreaking litigation.

But machines will shrink their ranks

and make these jobs harder to come by.

Now, as mentioned,

machines are not making progress
on novel situations.

The copy behind a marketing campaign
needs to grab consumers' attention.

It has to stand out from the crowd.

Business strategy means
finding gaps in the market,

things that nobody else is doing.

It will be humans that are creating
the copy behind our marketing campaigns,

and it will be humans that are developing
our business strategy.

So Yahli, whatever you decide to do,

let every day bring you a new challenge.

If it does, then you will stay
ahead of the machines.

Thank you.

(Applause)

所以这是我的侄女。

她的名字叫雅丽。

她九个月大了。

她妈妈是医生
,爸爸是律师。

到雅丽上大学时,

她父母所做的工作
看起来会大不相同。

2013 年,牛津
大学的研究人员对未来的工作进行了研究。

他们得出的结论是,
几乎每两个工作中就有一个

被机器自动化的风险很高。

机器学习是

造成这种破坏的大部分技术。

它是人工智能最强大的分支

它允许机器从数据中学习

并模仿
人类可以做的一些事情。

我的公司 Kaggle
处于机器学习的前沿。

我们汇集了
数十万专家


为工业界和学术界解决重要问题。

这让我们
对机器可以做

什么、不能做

什么以及它们可能
自动化或威胁到哪些工作有了独特的看法。

机器学习
在 90 年代初开始进入工业领域。

它从相对简单的任务开始。

首先是评估
贷款申请中的信用风险,

通过
读取邮政编码中的手写字符来分类邮件。

在过去的几年里,我们取得了
巨大的突破。

机器学习现在
能够完成更复杂的任务。

2012 年,Kaggle 向其社区发起挑战

,要求构建
一种可以对高中论文进行评分的算法。

获胜的
算法能够与

人类教师给出的成绩相匹配。

去年,我们发出
了更加艰巨的挑战。

您可以拍摄眼睛的图像
并诊断一种

称为糖尿病视网膜病变的眼病吗?

同样,获胜的
算法能够与

人类眼科医生给出的诊断相匹配。

现在,有了正确的数据,
机器将

在这样的任务上胜过人类。

一位教师
在 40 年的职业生涯中可能会阅读 10,000 篇论文。

眼科医生可能会看到 50,000 只眼睛。

一台机器可以在几分钟内阅读数百万篇文章
或看到数百万只眼睛

我们没有机会

在频繁、大容量的任务上与机器竞争。

但是有些事情我们
可以做机器做不到的。

机器

在处理新情况方面进展甚微。

他们无法处理
以前从未见过的事情。

机器学习的

根本局限性在于它需要
从大量过去的数据中学习。

现在,人类没有。

我们有能力连接
看似不同的线程

来解决我们以前从未见过的问题。

Percy Spencer 是
二战期间从事雷达工作的物理学家,

当时他注意到磁控管
正在融化他的巧克力棒。

他能够将他
对电磁辐射的理解

与他对烹饪的知识联系

起来以进行发明——有什么猜测吗?
——微波炉。

现在,这是创造力的一个特别显着的
例子。

但是这种异花授粉
在我们每个人身上每天发生

数千次。

在处理
新情况时,机器无法与我们竞争

,这对

机器将自动执行的人工任务造成了根本限制。

那么这
对未来的工作意味着什么呢?

任何一项工作的未来状态都
取决于对一个问题的回答:

该工作在多大程度上可以简化
为频繁、大批量的任务

,在多大程度上涉及
应对新情况?

在频繁、大批量的任务中,
机器变得越来越智能。

今天他们给论文评分。
他们诊断某些疾病。

在接下来的几年里,
他们将进行我们的审计

,他们将阅读
法律合同中的样板文件。

仍然需要会计师和律师。

复杂的税收结构

和开创性的诉讼将需要它们。

但是机器会缩小他们的队伍

,让这些工作更难找到。

现在,如前所述,

机器
在新情况下没有取得进展。

营销活动背后的副本
需要吸引消费者的注意力。

它必须从人群中脱颖而出。

商业战略意味着
在市场中寻找空白,这

是其他人没有做的事情。

将是人类
在我们的营销活动背后创建副本

,将是人类在制定
我们的业务战略。

所以雅丽,无论你决定做什么,

让每一天都给你带来新的挑战。

如果是这样,那么您将
领先于机器。

谢谢你。

(掌声)