Volcanic eruption explained Steven Anderson

In February of 1942,
Mexican farmer Dionisio Pulido

thought he heard thunder
coming from his cornfield.

However, the sound wasn’t coming
from the sky.

The source was a large, smoking crack
emitting gas and ejecting rocks.

This fissure would come to be known as
the volcano Paricutin,

and over the next 9 years, its lava
and ash would cover over 200 square km.

But where did this new volcano come from,

and what triggered
its unpredictable eruption?

The story of any volcano
begins with magma.

Often, this molten rock forms
in areas where ocean water

is able to slip into the Earth’s mantle
and lower the layer’s melting point.

The resulting magma typically remains
under the Earth’s surface

thanks to the delicate balance
of three geological factors.

The first is lithostatic pressure.

This is the weight of the Earth’s crust
pushing down on the magma below.

Magma pushes back with the second factor,
magmastatic pressure.

The battle between these forces
strains the third factor:

the rock strength of the Earth’s crust.

Usually, the rock is strong enough
and heavy enough

to keep the magma in place.

But when this equilibrium is thrown off,
the consequences can be explosive.

One of the most common causes
of an eruption

is an increase
in magmastatic pressure.

Magma contains various elements
and compounds,

many of which are dissolved
in the molten rock.

At high enough concentrations, compounds
like water or sulfur no longer dissolve,

and instead form
high-pressure gas bubbles.

When these bubbles reach the surface,

they can burst with the force
of a gunshot.

And when millions of bubbles
explode simultaneously,

the energy can send plumes of ash
into the stratosphere.

But before they pop, they act
like bubbles of C02 in a shaken soda.

Their presence lowers
the magma’s density,

and increases the buoyant force
pushing upward through the crust.

Many geologists believe this process
was behind the Paricutin eruption

in Mexico.

There are two known natural causes
for these buoyant bubbles.

Sometimes, new magma
from deeper underground

brings additional gassy compounds
into the mix.

But bubbles can also form
when magma begins to cool.

In its molten state, magma is a mixture
of dissolved gases and melted minerals.

As the molten rock hardens, some of those
minerals solidify into crystals.

This process doesn’t incorporate
many of the dissolved gasses,

resulting in a higher concentration
of the compounds

that form explosive bubbles.

Not all eruptions are due
to rising magmastatic pressure—

sometimes the weight of the rock
above can become dangerously low.

Landslides can remove massive quantities
of rock from atop a magma chamber,

dropping the lithostatic pressure
and instantly triggering an eruption.

This process is known as “unloading”

and it’s been responsible
for numerous eruptions,

including the sudden explosion
of Mount St. Helens in 1980.

But unloading can also happen
over longer periods of time

due to erosion or melting glaciers.

In fact, many geologists
are worried that glacial melt

caused by climate change
could increase volcanic activity.

Finally, eruptions can occur when
the rock layer is no longer strong enough

to hold back the magma below.

Acidic gases and heat escaping from magma

can corrode rock through a process
called hydrothermal alteration,

gradually turning hard stone
into soft clay.

The rock layer could also be weakened
by tectonic activity.

Earthquakes can create fissures
allowing magma to escape to the surface,

and the Earth’s crust
can be stretched thin

as continental plates
shift away from each other.

Unfortunately, knowing
what causes eruptions

doesn’t make them easy to predict.

While scientists can roughly determine
the strength and weight

of the Earth’s crust,

the depth and heat of magma chambers
makes measuring changes

in magmastatic pressure very difficult.

But volcanologists are constantly
exploring new technology

to conquer this rocky terrain.

Advances in thermal imaging
have allowed scientists

to detect subterranean hotspots.

Spectrometers can analyze
gases escaping magma.

And lasers can precisely track the impact
of rising magma on a volcano’s shape.

Hopefully, these tools will help us better
understand these volatile vents

and their explosive eruptions.

1942 年 2 月,
墨西哥农民迪奥尼西奥·普利多(Dionisio Pulido)

以为他
听到了从他的玉米地里传来的雷声。

然而,声音并非
来自天上。

源头是一个巨大的冒烟裂缝,
散发出气体和喷出的岩石。

这个裂缝后来被
称为帕里库廷火山

,在接下来的 9 年里,它的熔岩
和火山灰将覆盖 200 多平方公里。

但这座新火山是从哪里来的,

又是什么引发了
它不可预知的喷发呢?

任何火山的故事都
始于岩浆。

通常,这种熔岩形成

海水能够滑入地幔
并降低地幔熔点的区域。 由于三个地质因素的微妙平衡,

由此产生的岩浆通常保留
在地球表面之下

首先是岩石静压。

这是
地壳对下方岩浆的重量。

岩浆用第二个因素,
岩浆静压来推回。

这些力量之间的斗争
使第三个因素变得紧张:

地壳的岩石强度。

通常,岩石足够坚固且
足够重,

可以将岩浆保持在原位。

但是,当这种平衡被打破时
,后果可能是爆炸性的。 火山喷发

最常见的原因
之一是岩浆静压

的增加

岩浆含有各种元素
和化合物,

其中许多溶解
在熔岩中。

在足够高的浓度下,
水或硫等化合物不再溶解

,而是形成
高压气泡。

当这些气泡到达表面时,

它们会以枪声的力量爆裂

当数以百万计的气泡
同时爆炸时

,能量可以将灰烬
送入平流层。

但在它们爆裂之前,它们
就像摇晃的苏打水中的二氧化碳气泡一样。

它们的存在降低
了岩浆的密度,

并增加了
向上推动地壳的浮力。

许多地质学家认为这个过程
是墨西哥帕里库廷火山喷发

的原因。 这些浮力气泡

有两个已知的自然
原因。

有时,
来自地下深处的新岩浆

会带来额外的气体
化合物。

但是
当岩浆开始冷却时也会形成气泡。

在熔融状态下,岩浆
是溶解气体和熔融矿物的混合物。

随着熔岩变硬,其中一些
矿物凝固成晶体。

这个过程不包含
许多溶解的气体,

导致形成爆炸性气泡的化合物浓度更高。

并非所有的喷发都是
由于岩浆静压升高造成的——

有时上面岩石的重量
会变得非常低。

滑坡可以
从岩浆房顶部移除大量岩石,

降低岩石静压
并立即引发喷发。

这个过程被称为“卸载”

,它
导致了无数次喷发,

包括
1980 年圣海伦斯山的突然爆炸。

由于侵蚀或冰川融化,卸载也可能在较长时间内发生。

事实上,许多
地质学家担心

气候变化引起的冰川融化
会增加火山活动。

最后,
当岩层的强度不再

足以阻挡下方的岩浆时,可能会发生喷发。

从岩浆中逸出的酸性气体和热量

可以通过称为热液蚀变的过程腐蚀岩石

逐渐将坚硬的石头
变成柔软的粘土。

岩层也可能
因构造活动而减弱。

地震会产生裂缝,
让岩浆逃逸到地表,

随着大陆板块
相互远离,地壳会被拉得很薄。

不幸的是,知道
是什么导致火山喷发

并不容易预测。

虽然科学家可以粗略地确定地壳
的强度和

重量,但

岩浆房的深度和热量
使得测量

岩浆静压的变化非常困难。

但火山学家一直在
探索新技术

来征服这片多岩石的地形。

热成像技术的
进步使科学家

能够探测到地下热点。

光谱仪可以分析
逸出岩浆的气体。

激光可以精确追踪
上升的岩浆对火山形状的影响。

希望这些工具能帮助我们更好地
了解这些挥发性喷口

及其爆炸性喷发。