How to spark your curiosity scientifically Nadya Mason

Transcriber: Joseph Geni
Reviewer: Joanna Pietrulewicz

A friend called me a few weeks ago

with bad news.

She dropped her cell phone
into the toilet.

Anyone here done that before?

(Laughter)

So it was a bad situation.

You know, without getting into the details
of exactly how that happened

or how she got it out,

let’s just say it was a bad situation.

And she panicked because,
like for many of us,

her phone is one of the most used
and essential tools in her life.

But, on the other hand,
she had no idea how to fix it,

because it’s a completely
mysterious black box.

So think about it: what would you do?

What do you really understand
about how your phone works?

What are you willing to test or fix?

For most people, the answer is, nothing.

In fact, one survey found

that almost 80 percent
of smartphone users in this country

have never even replaced
their phone batteries,

and 25 percent didn’t even know
this was possible.

Now, I’m an experimental physicist,

hence the toys.

I specialize in making new types
of nanoscale electronic devices

to study their fundamental
quantum mechanical properties.

But even I wouldn’t know where to start
in terms of testing elements on my phone

if it broke.

And phones are just one example
of the many devices that we depend upon

but can’t test, take apart,
or even fully understand.

Cars, electronics, even toys
are now so complicated and advanced

that we’re scared to open and fix them.

So here’s the problem:

there’s a disconnect between us
and the technology that we use.

We’re completely alienated
from the devices that we most depend upon,

which can make us feel helpless and empty.

In fact, it’s not surprising then
that one study found

that we are now more afraid of technology

than we are of death.

(Laughter)

But I think that we can
reconnect to our devices,

rehumanize them in a sense,

by doing more hands-on experiments.

Why? Well, because an experiment
is a procedure to test a hypothesis,

demonstrate a fact.

It’s the way that we use our senses,

our hands,

to connect the world

and figure out how it works.

And that’s the connection
that we’re missing.

So let me give you an example.

Here’s an experiment that I did recently

to think about how a touchscreen works.

It’s just two metal plates,

and I can put charge
on one of the plates from a battery.

OK.

And I can measure the charge separation
with this voltmeter here.

Now – let’s make sure it’s working.

So when I wave my hand near the plates,

you can see that the voltage changes

just like the touchscreen
responds to my hand.

But what is it about my hand?
Now I need to do more experiments.

So I can, say, take a piece of wood

and touch one of the plates
and see that not much happens,

but if I take a piece of metal
and touch the plate,

then the voltage changes dramatically.

So now I can do further experiments
to see what the difference is

between the wood and the metal,

and I should find out
that the wood is not conducting

but the metal is conducting like my hand.

And, you see, I build up my understanding.

Like, now I can see why I can’t use
a touchscreen with gloves,

because gloves aren’t conducting.

But I’ve also broken down
some of the mystery behind the technology

and built up my agency,

my personal input and interactions
with the basis of my devices.

But experimenting is a step
beyond just taking things apart.

It’s testing and doing
hands-on critical thinking.

And it doesn’t really matter whether
I’m testing how a touchscreen works

or if I’m measuring how conducting
different types of materials are,

or even if I’m just using my hands
to see how hard it is to break

different thicknesses of materials.

In all cases, I’m gaining control
and understanding

of the basis of the things that I use.

And there’s research behind this.

For one, I’m using my hands,

which seem to promote well-being.

I’m also engaging in hands-on learning,

which has been shown
to improve understanding and retention,

and even activate
more parts of your brain.

So hands-on thinking through experiments

connects our understanding,

even our sense of vitality,

to the physical world
and the things that we use.

Looking things up on the internet

does not have the same effect.

Now, for me this focus on experiments

is also personal.

I didn’t grow up doing experiments.

I didn’t know what a physicist did.

I remember my sister had a chemistry set
that I always wanted to use

but she never let me touch.

I felt mentally disconnected
from the world

and didn’t know why.

In fact, when I was nine years old,

my grandmother called me a solipsist,

which is something I had to look up.

It means that you think
that yourself is all that exists.

And at the time I was pretty offended,

because whose grandmother calls them that?

(Laughter)

But I think that it was true.

And it wasn’t until years later,

when I was in college
and studying basic physics,

that I had a revelation

that the world,

at least the physical world,

could be tested and understood,

that I started to gain
a completely different sense

of how the world worked

and what my place was in it.

And then later,
when I was able my own testing

and understanding through research,

a big part of my connection
to the world was complete.

Now, I know that not everyone is
an experimental physicist by profession,

but I think that everyone could
be doing more hands-on experiments.

And actually I think we sort of –

I’ll give you another example.

I was recently working
with some middle school students,

helping them learn about magnetism,

and I gave them
a Magna Doodle to take apart.

Remember one of these things?

So at first, none of them
wanted to touch it.

They’d been told for so long
not to break things

that they’re accustomed
to just passive using.

But then I started asking them questions.

You know, how does it work?
What parts are magnetic?

Can you make a hypothesis and test it?

But they still didn’t want
to break it open.

They wanted to take it
home with them, really.

Until, one kid finally sliced it through
and found really cool stuff inside.

And so this is something
we can do here together.

They’re pretty easy to take apart.

See, there’s a magnet inside,
and I can just cut this open.

Cut it open again, you can split it.

OK, so when I do that –
I don’t know if you can see this,

but there is sort of – there it is,
this oozy white stuff in here.

Now you can see it on my finger.

And when I drag the pen on it,

you can see that these filaments
are attached to it.

So the kids saw this,

and at this point they’re like,
this is really cool.

They got excited.

They all started ripping them open
and taking them apart

and yelling out the things
that they discovered,

how these magnetic filaments
connected to the magnetic pen

and that’s how it wrote.

Or, how the oozy white stuff
kept things dispersed so it could write.

And as they were leaving the room,

two of them turned to me and said,

“We loved that.

Me and her are going home this weekend
to do more experiments.”

(Laughter)

Yeah, I know, the parents
in there are worried about it,

but it’s a good thing!

Experimenting is good, and actually
I found it extremely gratifying,

and I think hopefully it was
very life-enriching for them.

Because, even a basic magnet

is something that we
can experiment with at home.

They’re both simple and complex
at the same time.

For example, you can ask yourself,

how can the same material
both attract and repel?

If I take a magnet,
is it useful if I can get one of them

to rotate the other, for example?

Or, you can take
this dollar bill over here,

and I can take a set of magnets,

and you can see that the dollar bill
gets lifted by the magnets.

There’s magnetic ink hidden in here
that prevents counterfeiting.

Or, here I have some
crushed-up bran cereal. OK?

And that’s also magnetic. Right?

That has iron in it.

(Laughter)

And that can be good for you, right?

OK, here’s something else.

This thing over here is not magnetic.

I can’t lift it up with the magnet.

But now I’m going to make it cold.

The same thing in here, cold,

and when I make it cold,

and put it on top of the magnet,

so –

(Applause)

It’s amazing.

That’s not magnetic,

but somehow it’s interacting
with a magnet.

So clearly understanding this
is going to take many more experiments.

In fact, this is something that I’ve spent
much of my career studying.

It’s called a superconductor.

Now, superconductors can be complex,

but even simple experiments
can connect us better to the world.

So now if I tell you that flash memory
works by rotating small magnets,

then you can imagine it. You’ve seen it.

Or, if I say that MRI machines

use magnetism to rotate
magnetic particles in your body,

you’ve seen it done.

You’ve interacted with the technology
and understood the basis of these devices.

Now, I know that it’s hard
to add more things to our lives,

especially experiments.

But I think that
the challenge is worth it.

Think about how something works,
then take it apart to test it.

Manipulate something and prove
some physical principle to yourself.

Put the human back in the technology.

You’ll be surprised at
the connections that you make.

Thank you.

(Applause)

抄写员:Joseph
Geni 审稿人:Joanna Pietrulewicz

几个星期前,一位朋友给我打来

了坏消息。

她把手机
掉进了厕所。

这里有人做过吗?

(笑声)

所以情况很糟糕。

你知道,如果不详细
说明这件事是如何发生的,

或者她是如何把它弄出来的,

我们就说这是一个糟糕的情况。

她惊慌失措,因为
和我们许多人一样,

她的手机是
她生活中最常用和必不可少的工具之一。

但是,另一方面,
她不知道如何修复它,

因为它是一个完全
神秘的黑匣子。

所以想一想:你会怎么做?

您真正
了解手机的工作原理吗?

你愿意测试或修复什么?

对于大多数人来说,答案是,什么都没有。

事实上,一项调查发现

,该国近 80%
的智能手机用户

甚至从未更换
过手机电池

,25% 的人甚至不知道
这是可能的。

现在,我是一名实验物理学家,

因此是玩具。

我专注于制造
新型纳米级电子设备,

以研究它们的基本
量子力学特性。

但是,即使
我的手机坏了,我也不知道从哪里开始测试手机上的元素

手机只是
我们依赖

但无法测试、拆解
甚至完全理解的众多设备中的一个例子。

汽车、电子产品,甚至玩具
现在都如此复杂和先进

,以至于我们不敢打开和修理它们。

所以这就是问题所在:

我们
与我们使用的技术之间存在脱节。

我们与
我们最依赖的设备完全疏远,

这会让我们感到无助和空虚。

事实上
,一项研究

发现我们现在对技术的恐惧

超过了对死亡的恐惧,这并不奇怪。

(笑声)

但我认为我们可以
重新连接到我们的设备,

在某种意义上让它们重新人性化,

通过做更多的动手实验。

为什么? 好吧,因为实验
是检验假设的过程,所以要

证明一个事实。

这是我们用我们的感官、

我们的手

来连接世界

并弄清楚它是如何运作的方式。


就是我们缺少的联系。

所以让我给你举个例子。

这是我最近做的

一个关于触摸屏如何工作的实验。

它只是两个金属板

,我可以
用电池给其中一个板充电。

行。

我可以在
这里用这个电压表测量电荷分离。

现在 - 让我们确保它正常工作。

因此,当我在板附近挥手时,

您会看到电压的变化

就像触摸屏
对我的手做出反应一样。

但是我的手怎么了?
现在我需要做更多的实验。

所以我可以,比如说,拿一块木头

,触摸其中一个板,
然后发现并没有发生太大的变化,

但是如果我拿一块金属
,触摸板,

那么电压就会发生巨大的变化。

所以现在我可以做进一步的实验
,看看

木头和金属之间有什么区别

,我应该会
发现木头不导电,

但金属像我的手一样导电。

而且,你看,我建立了我的理解。

就像,现在我明白为什么我不能
戴手套使用触摸屏了,

因为手套不导电。

但我也打破
了技术背后的一些谜团,

并建立了我的代理、

我的个人投入以及
与我的设备基础的交互。

但是,实验
不仅仅是把事情拆开的一步。

它是测试和
实践批判性思维。

无论
我是在测试触摸屏的工作原理,

还是在测量
不同类型材料的导电性,

或者即使我只是用
双手看看打破不同厚度的难度,这并不重要

的材料。

在所有情况下,我都在控制

理解我使用的东西的基础。

这背后有研究。

一方面,我正在使用我的双手,

这似乎可以促进幸福。

我还参与了动手学习,

这已被证明
可以提高理解力和记忆力,

甚至可以激活
大脑的更多部分。

因此,通过实验进行动手思考

将我们的理解,

甚至我们的活力感,

与物理世界
和我们使用的事物联系起来。

在互联网上查找内容

并没有相同的效果。

现在,对我来说,这种对实验的关注

也是个人的。

我不是在做实验长大的。

我不知道物理学家做了什么。

我记得我姐姐
有一套我一直想用的化学装置,

但她从不让我碰。

我感到精神上与世界脱节

,不知道为什么。

事实上,当我九岁的时候,

我的祖母称我为唯我论者,

这是我不得不仰望的。

这意味着你
认为你自己就是存在的一切。

当时我很生气,

因为谁的祖母这么称呼他们?

(笑声)

但我认为这是真的。

直到几年后,

当我在
大学学习基础物理时

,我才

发现这个世界,

至少是物理世界,

可以被测试和理解

,我开始获得
一种完全不同的感觉

。 世界如何运作

以及我在其中的位置。

后来,
当我能够

通过研究进行自己的测试和理解时

,我与世界的很大一部分联系
就完成了。

现在,我知道并不是每个人
都是专业的实验物理学家,

但我认为每个人都
可以做更多的动手实验。

实际上,我认为我们有点——

我再举一个例子。

我最近
和一些中学生一起工作,

帮助他们了解磁性

,我给了他们
一个 Magna Doodle 让他们拆开。

还记得其中一件事吗?

所以一开始,他们都
不想碰它。

长期以来,他们一直被告知
不要破坏

他们
习惯于被动使用的东西。

但后来我开始问他们问题。

你知道,它是如何工作的?
哪些部位有磁性?

你能做出假设并进行测试吗?

但他们仍然
不想打开它。

他们真的想把它
带回家。

直到,一个孩子终于把它切开
,发现里面很酷的东西。

所以这是
我们可以在这里一起做的事情。

它们很容易拆开。

看,里面有一块磁铁
,我可以把它切开。

再切开,就可以分开了。

好的,所以当我这样做的时候——
我不知道你能不能看到这个,

但是有一种——就在那里,这里有
这种渗出的白色东西。

现在你可以在我的手指上看到它。

而当我将笔拖在上面时,

你可以看到这些
细丝附着在上面。

所以孩子们看到了这个

,在这一点上他们就像,
这真的很酷。

他们很兴奋。

他们都开始撕开它们
,把它们拆开

,大声喊出
他们发现的东西,

这些磁丝是如何
连接到磁

笔上的,它就是这样写的。

或者,渗出的白色东西是如何
分散东西以便它可以写字的。

当他们离开房间时,其中

两个转向我说:

“我们喜欢这样。

我和她这个周末要回家
做更多的实验。”

(笑声)

是的,我知道,
那里的父母很担心,

但这是好事!

实验是好的,实际上
我发现它非常令人满意

,我希望这
对他们来说是非常丰富的生活。

因为,即使是基本的磁铁

,我们
也可以在家里进行试验。

它们既简单又
复杂。

例如,您可以问自己,

同一种材料如何
既吸引又排斥?

例如,如果我拿一块磁铁,
如果我可以让其中一个

旋转另一个是否有用?

或者,你可以把
这张钞票拿过来

,我可以拿一组磁铁

,你可以看到钞票
被磁铁抬起。

这里隐藏着磁性墨水
,可以防止伪造。

或者,我这里有一些
碎麸麦片。 好的?

这也是磁性的。 对?

那里面有铁。

(笑声)

这对你有好处,对吧?

好的,这里有别的东西。

这里的东西没有磁性。

我不能用磁铁把它抬起来。

但现在我要让它变冷。

同样的东西在这里,很冷

,当我把它变冷,

然后把它放在磁铁上,

所以——

(掌声

)太棒了。

那不是磁性的,

但不知何故它
与磁铁相互作用。

如此清楚地理解
这一点将需要更多的实验。

事实上,这
是我职业生涯中大部分时间都在研究的东西。

它被称为超导体。

现在,超导体可能很复杂,

但即使是简单的实验
也可以更好地将我们与世界联系起来。

所以现在如果我告诉你
闪存是通过旋转小磁铁来工作的,

那么你可以想象得到。 你已经看到了。

或者,如果我说 MRI 机器

使用磁力来旋转
你体内的磁性粒子,

你已经看到了。

您已经与技术进行了交互
并了解了这些设备的基础。

现在,我知道很难
为我们的生活添加更多东西,

尤其是实验。

但我
认为挑战是值得的。

想想某样东西是如何工作的,
然后把它拆开来测试它。

操纵某些东西
并向自己证明一些物理原理。

让人类重新回到技术中。

你会对你建立的联系感到惊讶。

谢谢你。

(掌声)