Haptography Digitizing our sense of touch Katherine Kuchenbecker

Translator: Andrea McDonough
Reviewer: Morton Bast

I’m a mechanical engineering professor

at the University of Pennsylvania,

and my favorite hobby is photography.

And as I travel around the world,

I love taking photographs like these,

so I can remember all
the beautiful and interesting things

that I’ve seen.

But what I can’t do is record and share

how these objects feel to touch.

And that’s kind of surprising,

because your sense of touch
is really important.

It’s involved in every physical
interaction you do every day,

every manipulation task,
anything you do in the world.

So the sense of touch
is actually pretty interesting.

It has two main components.

The first is tactile sensations,

things you feel in your skin.

And the second is kinesthetic sensations.

This has to do with the position
of your body and how it’s moving,

and the forces you encounter.

And you’re really good at incorporating

both of these types of sensations together

to understand the physical interactions
you have with the world

and understand as you touch a surface:

is it a rock, is it a cat,
is it a bunny, what is it?

And so, as an engineer,

I’m really fascinated

and I have a lot of respect
for how good people are with their hands.

And I’m intrigued and curious

about whether we could
make technology better

by doing a better job at leveraging

the human capability
with the sense of touch.

Could I improve the interfaces
to computers and machines

by letting you take
advantage of your hands?

And indeed, I think we can,

and that’s at the core
of a field called haptics,

and this is the area that I work in.

It’s all about interactive
touch technology.

And the way it works is,

as you move your body through the world,

if, as an engineer, I can make a system
that can measure that motion,

and then present to you
sensations over time

that kind of make sense,

that match up with what you might feel
in the real world,

I can fool you into thinking
you’re touching something

even though there’s nothing there.

So here are three examples

and these are all done
from research in my lab at Penn.

The first one is all about that same
problem that I was showing you:

how can we capture how objects feel

and recreate those experiences?

So the way we solve this problem

is by creating a hand-held tool

that has many different sensors inside.

It has a force sensor, so we can tell
how hard you’re pushing;

it has motion tracking, so we can tell
exactly where you’ve moved it;

and it has a vibration sensor,
an accelerometer, inside,

that detects the shaking
back and forth of the tool

that lets you know
that’s a piece of canvas

and not a piece of silk or something else.

Then we take the data we record
from these interactions.

Here’s ten seconds of data.

You can see how the vibrations
get larger and smaller,

depending on how you move.

And we make a mathematical
model of those relationships

and program them into a tablet computer

so that when you take the stylus

and go and touch the screen,

that voice-coil actuator
in the white bracket

plays vibrations to give you the illusion

that you’re touching the real surface,

just like if you touched, dragged
back and forth, on the real canvas.

We can create very compelling illusions.

We can do this for all kinds of surfaces
and it’s really a lot of fun.

We call it haptography –
haptic photography.

And I think it has potential
benefits in all sorts of areas

like online shopping,
maybe interactive museum exhibits,

where you’re not supposed
to touch the precious artifacts,

but you always want to.

The second example I want to tell you
about comes from a collaboration I have

with Dr. Margrit Maggio
at the Penn Dental School.

Part of her job is to teach
dental students

how to tell where in a patient’s mouth
there are cavities.

Of course they look at X-rays,

but a large part of this clinical judgment
comes from what they feel

when they touch your teeth
with a dental explorer.

You’ve all had this happen,
they go across.

What they’re feeling for is if the tooth
is really hard, then it’s healthy,

but if it’s kind of soft and sticky,

that’s a signal that the enamel
is starting to decay.

These types of judgments are hard
for a new dental student to make,

because they haven’t touched
a lot of teeth yet.

And you want them to learn this
before they start practicing

on real human patients.

So what we do is add an accelerometer
on to the dental explorer,

and then we record what Dr. Maggio feels

as she touches different extracted teeth.

And we can play it back for you as a video

with a touch track –

not just a sound track,
but also a touch track,

that you can feel by holding
that repeating tool.

You feel the same things the dentist
felt when they did the recording,

and practice making judgments.

So here’s a sample one.

Here’s a tooth that looks
kind of suspicious, right?

It has all those brown stains.

You might be thinking, “We should
definitely put a filling in this tooth.”

But if you pay attention to how it feels,

all the surfaces of this tooth
are hard and healthy,

so this patient does not need a filling.

And these are exactly the kind
of judgments doctors make every day

and I think this technology
we’ve invented has a lot of potential

for many different things in medical
training, because it’s really simple

and it does a great job at recreating
what people feel through tools.

I think it could also help make games
more interactive and fun

and more realistic
in the sensations that you feel.

The last example I want to tell you about
is again about human movement.

So if any of you have ever learned sports,

how do you get good
at something like surfing?

You practice.

You practice some more and more, right?

Making small corrections,
maybe getting some input from a coach,

learning how to improve your motions.

I think we could use computers

to help make that process
more efficient and more fun.

And so here, for example,
if I have six different arm movements

that I want you to learn,

you come into my lab at Penn
and try out our system.

We use a Kinect to measure your motions,
we show graphics on the screen,

and then we also give you touch cues,

haptic feedback on your arm,

delivered by these haptic arm bands
which have motors inside,

and guide you as you move.

So, if we put it together,

as you’re trying to track this motion,

if you deviate – say, maybe,
your arm is a little too high –

we turn on the motors
right there on the skin

to let you know you should move down,

almost like a coach gently guiding you

and helping you master
these movements more quickly

and make more precise corrections.

We developed this system
for use in stroke rehabilitation,

but I think there are a lot
of applications,

like maybe dance training
or all sorts of sports training as well.

So now you know a little bit
about the field of haptics,

which I think you’ll hear more
about in the coming years.

I’ve shown you three examples.

I just want to take a moment

to acknowledge the great students
who work with me in my lab at Penn

and my collaborators.

They’re a great group.

I also want to thank you
for your kind attention.

(Applause)

译者:Andrea McDonough
审稿人:Morton Bast

我是宾夕法尼亚大学的机械工程教授

,我最喜欢的爱好是摄影。

当我环游世界时,

我喜欢拍这样的照片,

这样我就能记住我所见过的
所有美丽而有趣的事情

但我不能做的是记录和分享

这些物体触摸的感觉。

这有点令人惊讶,

因为你的
触觉真的很重要。

它涉及您每天进行的每一次物理
交互、

每一项操作任务以及
您在世界上所做的任何事情。

所以触觉
其实很有趣。

它有两个主要组成部分。

首先是

触觉,你在皮肤上的感觉。

第二个是动觉。


与你身体的位置、它的运动方式

以及你遇到的力有关。

你真的很擅长

将这两种感觉结合在一起,

以了解
你与世界的物理相互作用,

并在你触摸一个表面时了解

:它是一块石头,是一只猫
,它是一只兔子,什么是 它?

所以,作为一名工程师,

我真的很着迷

,我非常
尊重人们的双手有多好。

我对

我们是否可以

通过更好地

利用人类
的触觉能力来改进技术感到好奇和好奇。

我可以

通过让你
利用你的双手来改进计算机和机器的接口吗?

事实上,我认为我们可以

,这是
触觉领域的核心,

也是我工作的领域。

这完全是关于交互式
触摸技术。

它的工作方式是,

当你在世界上移动你的身体时,

如果,作为一名工程师,我可以制造一个
可以测量那个运动的系统,

然后
随着时间的推移向你呈现

那种有意义的感觉

,匹配 以你
在现实世界中的感受,

我可以欺骗你,让你以为
你在触摸什么东西,

即使那里什么都没有。

所以这里有三个例子

,这些都是
从我在宾夕法尼亚大学实验室的研究中完成的。

第一个
问题与我向您展示的相同问题:

我们如何捕捉对象的感觉

并重新创建这些体验?

所以我们解决这个问题的方法

是创建一个

内部有许多不同传感器的手持工具。

它有一个力传感器,所以我们可以
知道你的推力有多大;

它具有运动跟踪功能,因此我们可以
准确地知道您将其移动到了哪里;

它内部有一个振动传感器,
一个加速度计,

可以检测
工具的来回晃动

,让你知道
这是一块帆布,

而不是一块丝绸或其他东西。

然后我们从这些交互中获取我们记录的数据

这是十秒的数据。

您可以看到振动如何
变得越来越小,

具体取决于您的移动方式。

我们
为这些关系建立一个数学模型,

并将它们编程到平板电脑中,

这样当你拿起手写笔

去触摸屏幕时

,白色支架中的音圈致动器

就会发出振动,给你

一种你在 触摸真实的表面,

就像
在真实的画布上触摸、前后拖动一样。

我们可以创造非常引人注目的幻想。

我们可以对各种表面进行此操作
,这真的很有趣。

我们称之为
触觉摄影——触觉摄影。

而且我认为它
在各种领域都有潜在的好处,

比如在线购物,
也许是互动博物馆展览,

在那里你不
应该触摸珍贵的文物,

但你总是想触摸。

我想告诉你的第二个例子
来自我与

宾夕法尼亚牙科学校的 Margrit Maggio 博士的合作。

她的部分工作是教
牙科学生

如何分辨患者口腔中的哪个位置
有蛀牙。

他们当然会看 X 光片,

但这种临床判断的很大一部分
来自

他们用牙科探查器触摸您的牙齿时的感觉

你们都发生过这种情况,
他们过去了。

他们的感受是,如果
牙齿真的很硬,那么它是健康的,

但如果它有点柔软和粘稠,

那就是
牙釉质开始腐烂的信号。

这些类型的判断
对于一个新的牙科学生来说很难做出,

因为他们还没有接触
过很多牙齿。

您希望
他们在开始

对真正的人类患者进行练习之前了解这一点。

所以我们要做的是
在牙科探测器上添加一个加速度计,

然后我们记录 Maggio 博士

在触摸不同拔出的牙齿时的感受。

我们可以将它作为带有触摸轨道的视频为您播放

——

不仅是声音轨道,
还有触摸轨道

,您可以通过拿着
该重复工具来感受。

你和牙医
做录音时的感觉一样

,练习做出判断。

所以这里有一个示例。

这是一颗看起来
有点可疑的牙齿,对吧?

它有所有的棕色污渍。

您可能会想,“我们
绝对应该在这颗牙齿上填充填充物。”

但是如果你注意它的感觉,

这颗牙齿的所有表面
都是坚硬和健康的,

所以这个病人不需要补牙。

这些正是
医生每天做出的判断

,我认为
我们发明的这项技术

在医学培训中的许多不同方面具有很大的潜力
,因为它非常简单,

并且在重建
人们的感受方面做得很好 工具。

我认为它还可以帮助让游戏
更具互动性和趣味性


让你感受到的感觉更加真实。

我想告诉你的最后一个例子
是关于人类运动的。

因此,如果你们中的任何人都学过运动,

那么如何才能
擅长冲浪之类的事情呢?

你练习。

你练习得越来越多,对吧?

做一些小的修正,
也许从教练那里得到一些意见,

学习如何改进你的动作。

我认为我们可以使用计算机

来帮助使这个过程
更高效、更有趣。

所以在这里,例如,
如果我想让你学习六种不同的手臂动作

你可以到我在宾夕法尼亚大学的实验室
来试用我们的系统。

我们使用 Kinect 来测量您的动作,
我们在屏幕上显示图形,

然后我们还为您提供触摸提示、

手臂上的触觉反馈,


这些内置电机的触觉臂带提供,

并在您移动时为您提供指导。

所以,如果我们把它放在一起,

当你试图跟踪这个动作时,

如果你偏离了——比如说,
你的手臂有点太高了——

我们会打开皮肤上的电机

让你知道 你应该向下移动,

就像一个教练温柔地引导你

,帮助你
更快地掌握这些动作

,做出更精确的修正。

我们开发了这个系统
用于中风康复,

但我认为有
很多应用,

比如舞蹈训练
或各种运动训练。

所以现在你
对触觉领域有了一些了解

,我想你会
在未来几年听到更多。

我已经给你展示了三个例子。

我只想

花点时间感谢
在宾夕法尼亚大学实验室与我一起工作的优秀学生

以及我的合作者。

他们是一个很棒的团体。

我还要
感谢您的关注。

(掌声)