How Curiosity got us to Mars Bobak Ferdowsi

Transcriber: Andrea McDonough
Reviewer: Bedirhan Cinar

About 100 days ago,

we landed a two-ton SUV
on the surface of another planet,

on the surface of Mars.

This is one of the first pictures
we took there with our rover,

looking out at Mount Sharp.

I kind of cry a little bit,

choke up, when I see this picture.

Why Mars and why do we look
at these other planets?

Part of it is to understand
our own planet –

what’s the context for us?

We live on this amazing planet,
but Mars is a lot like Earth.

It’s similar in size.

During the daytime, it can
get up to 70 degrees Fahrenheit.

So, it’s so like Earth,
but at the same time,

this is a barren landscape.

You don’t see any trees,
you don’t see any cactuses growing,

anything like that.

Today I’m going to tell you
about how we got from Earth to Mars

and why it’s so cool.

So one of the things we start with
is a blank sheet of paper.

We knew from the previous missions
in 2004, Spirit and Opportunity,

there was water on Mars in the past.

But what’s the next step?

We’re looking for an even more
fundamental level of,

what does it take to have life survive?

And so, to have that kind
of knowledge and understanding,

we have to carry
a mass amount of instruments.

We have to carry the kind of labs

that people have whole rooms
devoted to on Earth

inside of, essentially, a small car.

And we shrunk it all down

to something that weighs
about as much as I do,

and then put it inside of this rover
that weighs as much as your car does.

And that rover is now
on the surface of Mars,

but it’s so heavy,

and so it kind of takes
a special challenge for us

to make it all work and come together.

So we look at our tool of,
what do we have to land stuff on Mars?

And one of the options is airbags.

We’ve done it before.

Airbags are pretty cool,
they bounce around a lot.

You could never put a human
inside of an airbag,

because they would get squashed.

But the problem with airbags is,
the airbags you see here,

which landed the smaller rover –
it’s like 400 pounds, the entire rover –

were about the size of this room.

So you can imagine the size
of airbags it would take

to land a two-ton rover on Mars.

And they’d have to be made
out of materials

that don’t even exist today,

so it’d be some kind of exotic material
that we’d have to develop

and it may or may not work.

So, what about rockets?

You know, you see all the rocket ships
landing in old movies,

all rockets on the bottom –
it’s a cool idea.

It works when they’re pretty light still,

but the problem is, these rockets
have to be pretty strong

to actually softly land you on Mars.

And so they would be so powerful
they could dig holes into the ground

and then you would just
end up inside of a hole

and not be able to drive out of it.

So, not the best design.

But what if I could take the rockets
and move them up?

And that’s what we came up with.

It’s a rocket-powered jet pack;
we call it the Sky Crane.

Basically, this big rocket
sits on top of our rover

and when we’re ready to land,
the rocket hovers in place

and we slowly lower
the rover to the ground.

And then we touch down,
we’re actually on the wheels,

we’re ready to drive, day one.

But in addition to that,
the scientists were like,

“We actually want to go
somewhere interesting.”

The last two missions were cool,

but they basically landed in what was like
landing in the plains or desert.

Not very exciting.

We all know from the exciting places
on Earth like the Grand Canyon,

those are, for the scientists,
the most interesting,

because you see that whole layer,

you see years and years
of history all in one place.

The same thing is true
for where we landed.

We wanted to land somewhere
that was unique,

that had this crater wall
where things had been dug up for us,

where mountains were pushing things up.

But the problem is, if you landed
with the older systems,

you could’ve landed on the side
of that mountain and just tumbled off,

could’ve been the side of a cliff,
the crater wall or a large boulder.

So we needed a kind of technology

to help us land in a very small area,

and that was this little
guided entry from Apollo.

We took it from the 1960s.

We flew over like the manned vehicle,
because they have to pick up men,

you can’t just land all over the place.

And then we landed, like,
spot-on in the middle.

And in fact, it was so spot-on
that when we did it,

it was basically like a quarterback
launching towards Mars –

like a quarterback, though,
that was in Seattle,

throwing at a receiver that was moving
here in Giants Stadium.

That’s how accurate we were.
Kind of awesome.

But you only get one shot,

and so we actually have to design a system

that we can build and test and operate,

and so it’s not just about
can we get it to Mars,

but, if it’s only one chance,

how do you make sure
that one chance goes well?

So there’s all these processes
to make sure things are built properly.

Then we go out to the desert
and drive around and test it.

We fly things in F-18s to make sure
the radar systems work in high speeds.

Then, most importantly, we test the team
to make sure they know how to operate it.

We don’t want to miss it
because we sent the wrong command

and now it’s going
to be rebooting forever.

So, that guy Fred there,
he did a lot of that.

And then we launched it
on this rocket to Mars.

We landed 2,000 pounds on Mars,

but the entire thing
was about 10,000 pounds

when we lifted off from Earth,

all the fuel and the solar arrays
and everything else that we needed.

And, again, we were so accurate

that we landed in this, like,
little pin-point on Mars.

In the meantime, though, we had to design
a landing system that worked.

And I told you about the actual physics
of it, but here’s the catch:

Mars is about 14 minutes
away from Earth in light speed,

which means if I try
to control it with a joystick,

I would be always controlling
to 14 minutes in advance,

so it wouldn’t work.

So we had to give it all the smarts
and knowledge it needed to make it happen.

So we built in all these
smarts and algorithms

and told it here’s what
you’re going to have to do,

and it goes from basically
five times the speed of a speeding bullet

to about a baby’s crawl,

all within about seven minutes,

which are called
the seven minutes of terror,

because I was about to throw up.

(Laughter)

But today we’re on the surface of Mars,
and this was one of the panoramas we took

a couple days after we landed,

and it’s amazing to me,
because you look at this,

and can see the Grand Canyon,

you can see your own planet,
you can imagine walking on the surface.

And so what we’re going to do
and continue to do

is to understand
what makes Mars so special

and what makes Earth even more special

that we’re all here together today.

So we’ll see where Curiosity takes us –

not just our rover,

but our sense of exploration.

Thank you.

(Applause)

抄写员:Andrea McDonough
审稿人:Bedirhan Cinar

大约 100 天前,

我们将一辆重达 2 吨的 SUV 降落
在另一个星球

的表面,即火星表面。

这是
我们与漫游车在那里拍摄的第一张照片之一,

俯瞰夏普山。

当我看到这张照片时,我有点哭泣,哽咽。

为什么是火星,为什么我们要
观察这些其他行星?

其中一部分是了解
我们自己的星球——

我们的背景是什么?

我们生活在这个神奇的星球上,
但火星很像地球。

它的大小相似。

在白天,它可以
达到华氏 70 度。

所以,它很像地球,
但同时,

这是一片贫瘠的风景。

你看不到任何树木,
看不到任何仙人掌生长,

诸如此类。

今天我要告诉你
我们是如何从地球到火星的,

以及为什么它这么酷。

所以我们
从一张白纸开始。

我们从 2004 年之前的任务“
勇气号”和“机遇号”中得知,

过去火星上有水。

但下一步是什么?

我们正在寻找一个更
基本的水平,

生命生存需要什么?

因此,为了拥有
这种知识和理解,

我们必须
携带大量的仪器。

我们必须携带

人们在地球上拥有整个房间的那种实验室

,本质上是一辆小汽车。

我们把它缩小


和我一样重的东西,

然后把它放在这个
和你的车一样重的漫游车里。

那辆火星车现在
在火星表面,

但它太重了

,所以我们需要
一个特殊的挑战

才能让它全部工作并聚集在一起。

所以我们看看我们的工具,
我们需要什么才能在火星上着陆?

其中一种选择是安全气囊。

我们以前做过。

安全气囊非常酷,
它们会弹跳很多。

你永远不能把人
放进安全气囊里,

因为他们会被压扁。

但是安全气囊的问题是
,你在这里看到的安全气囊,

它降落在较小的火星车上
——整个火星车重 400 磅

——大约有这个房间那么大。

因此,您可以想象

将两吨重的火星车降落在火星上所需的安全气囊大小。

而且它们必须由

今天甚至不存在的材料制成,

所以它是我们必须开发的某种奇异材料

,它可能会或可能不会起作用。

那么,火箭呢?

你知道,你会在老电影中看到所有的火箭飞船
降落,

所有的火箭都在底部——
这是一个很酷的主意。

当它们仍然很轻时它可以工作,

但问题是,这些火箭
必须非常强大

才能真正将你轻轻地降落在火星上。

所以他们会非常强大
,可以在地上挖洞

,然后你就会掉进
一个洞里

,无法开车出来。

所以,不是最好的设计。

但是,如果我能把
火箭运上来怎么办?

这就是我们想出的。

这是一个火箭动力喷气背包;
我们称之为天鹤。

基本上,这个大火箭
位于我们的漫游车顶部

,当我们准备着陆时
,火箭会在原地盘旋,

然后我们
将漫游车慢慢降低到地面。

然后我们着陆,
我们实际上是在轮子上,

我们准备好开车了,第一天。

但除此之外
,科学家们说,

“我们实际上想去一个
有趣的地方。”

最后两个任务很酷,

但基本上都是
降落在平原或沙漠中。

不是很令人兴奋。

我们都知道地球上令人兴奋的地方
,比如大峡谷

,对于科学家来说,
这些地方最有趣,

因为你可以看到整个层,

你可以在一个地方看到多年和多年
的历史。

我们降落的地方也是如此。

我们想降落
在一个独特的地方,

那里有火山口的墙壁
,在那里我们为我们挖了东西,

那里的山脉正在推高东西。

但问题是,如果你
使用较旧的系统着陆,

你可能会降落在
那座山的一侧然后翻滚,

可能是悬崖
、火山口壁或巨石的一侧。

所以我们需要一种技术

来帮助我们在一个很小的区域着陆

,这就是
来自阿波罗的这个小引导入口。

我们从 1960 年代开始使用它。

我们像载人汽车一样飞过来,
因为他们要接人,

你不能到处降落。

然后我们
降落在中间。

事实上,它是如此准确,
以至于当我们这样做时,

它基本上就像一个四分卫
向火星发射——

不过,就像一个四分卫
,在西雅图,

向一个正在巨人体育场移动的接球手投掷

这就是我们的准确度。
真棒。

但是你只有一次机会

,所以我们实际上必须设计一个

我们可以构建、测试和操作的系统

,所以这不仅仅是
我们能不能把它带到火星上,

而是,如果只有一次机会,

你怎么做
确定一次机会顺利吗?

所以有所有这些过程
来确保正确构建事物。

然后我们去
沙漠开车四处测试它。

我们在 F-18 上飞行,以
确保雷达系统高速工作。

然后,最重要的是,我们测试团队
以确保他们知道如何操作它。

我们不想错过它,
因为我们发送了错误的命令

,现在它将
永远重新启动。

所以,那个弗雷德在那里,
他做了很多。

然后我们
用这枚火箭将它发射到火星。

我们在火星上着陆了 2,000 磅,

但当我们从地球上起飞时,整个
东西大约是 10,000 磅

,包括

所有燃料和太阳能电池板
以及我们需要的所有其他东西。

而且,再一次,我们是如此准确

,以至于我们降落在这个,就像
火星上的小点一样。

但与此同时,我们必须设计
一个有效的着陆系统。

我告诉过你它的实际
物理特性,但有一个问题:

火星
以光速距离地球大约 14 分钟,

这意味着如果我尝试
用操纵杆控制它,

我总是会
提前 14 分钟控制 ,

所以它不起作用。

因此,我们必须
赋予它实现它所需的所有智慧和知识。

所以我们建立了所有这些
智能和算法,

并告诉它这是
你必须要做的

,它从基本上
是超速子弹的五倍速度

到婴儿爬行的速度,

都在大约七分钟内,

这是 被称为
恐怖的七分钟,

因为我快要吐了。

(笑声)

但是今天我们在火星表面
,这是我们着陆后几天拍的全景图

,这让我很惊讶,
因为你看这个

,可以看到大峡谷,

你 可以看到自己的星球,
可以想象在地表行走。

因此,我们将要做
并继续做的

是了解
是什么让火星如此特别

,是什么让地球更加特别

,以至于我们今天都在这里。

所以我们会看看好奇号把我们带到哪里——

不仅仅是我们的漫游者,

还有我们的探索意识。

谢谢你。

(掌声)