Why didnt this 2000 year old body decompose Carolyn Marshall

In 1984, two field workers discovered
a body in a bog outside Cheshire, England.

Officials named the body the Lindow Man

and determined that he’d suffered
serious injuries,

including blunt trauma and strangulation.

But the most shocking thing
about this gruesome story

was that they were able to determine these
details from a body over 2,000 years old.

Typically, decomposition would make
such injuries hard to detect

on a body buried just weeks earlier.

So why was this corpse
so perfectly preserved?

And why don’t all bodies
stay in this condition?

The answers to these questions
live six feet underground.

It may not appear very lively down here,

but a single teaspoon of soil
contains more organisms

than there are human beings on the planet.

From bacteria and algae
to fungi and protozoa,

soils are home to one quarter of Earth’s
biodiversity.

And perhaps the soil’s most important
inhabitants are microbes,

organisms no larger
than several hundred nanometers

that decompose all the planet’s
dead and dying organic material.

Imagine we drop an apple in the forest.

As soon as it contacts the soil,

worms and other invertebrates begin
breaking it down into smaller parts;

absorbing nutrients from what they consume
and excreting the rest.

This first stage of decomposition
sets the scene for microbes.

The specific microbes present
depend on the environment.

For example, in grasslands and farm fields
there tend to be more bacteria,

which excel at breaking down
grass and leaves.

But in this temperate forest
there are more fungi,

capable of breaking down
complex woody materials.

Looking to harvest more food
from the apple’s remains,

these microbes release enzymes

that trigger a chemical reaction
called oxidation.

This breaks down the molecules
of organic matter, releasing energy,

carbon, and other nutrients
in a process called mineralization.

Then microbes consume the carbon
and some nutrients,

while excess molecules of nitrogen,
sulfur, calcium, and more

are left behind in the soil.

As insects and worms eat
more of the apple,

they expose more surface area
for these microbial enzymes

to oxidize and mineralize.

Even the excretions they leave behind
are mined by microbes.

This continues until the apple
is reduced to nothing—

a process that would take one to two
months in a temperate forest.

Environments that are hot and wet
support more microbes

than places that are cold and dry,

allowing them to decompose things
more quickly.

And less complex organic materials
break down faster.

But given enough time,

all organic matter is reduced
to microscopic mineral nutrients.

The atomic bonds between these molecules
are too strong to break down any further.

So instead,
these nutrients feed plant life,

which grow more food that will
eventually decompose.

This constant cycle of creating and
decomposing supports all life on Earth.

But there are a few environments too
hostile for these multi-talented microbes—

including the peat bogs
outside Cheshire, England.

Peat bogs are mostly made of highly
acidic Sphagnum mosses.

These plants acidify the soil
while also releasing a compound

that binds to nitrogen,
depriving the area of nutrients.

Alongside cold
northern European temperatures,

these conditions make it impossible
for most microbes to function.

With nothing to break them down,

the dead mosses pile up,
preventing oxygen from entering the bog.

The result is a naturally sealed system.

Whatever organic matter enters a peat bog
just sits there— like the Lindow Man.

The acid of the bog was strong enough

to dissolve relatively simple material
like bone,

and it turned more complex tissue
like skin and organs pitch black.

But his corpse is otherwise
so well-preserved,

that we can determine
he was healthy, mid-20s,

and potentially wealthy
as his body shows few signs of hard labor.

We even know the Lindow Man’s last meal—

a still undigested piece of charred bread.

Scholars are less certain about
the circumstances of his death.

While cold-blooded murder
is a possibility,

the extremity of his injuries
suggest a ritual sacrifice.

Even 2,000 years ago,

there’s evidence the bog was known
for its almost supernatural qualities;

a place where the soil beneath your feet
wasn’t quite dead or alive.

1984 年,两名现场工作人员
在英格兰柴郡郊外的沼泽中发现了一具尸体。

官员们将尸体命名为林道人,

并确定他受了
重伤,

包括钝伤和勒死。

但这个令人毛骨悚然的故事最令人震惊的

是,他们能够
从一具 2000 多年前的尸体上确定这些细节。

通常情况下,分解会使
这种伤害很难

在几周前埋葬的尸体上被发现。

那么为什么这具尸体
保存得如此完好呢?

为什么不是所有的身体都
保持这种状态?

这些问题的答案就在
地下六英尺处。

这里可能看起来不太热闹,

但一茶匙土壤
中的生物

比地球上的人类还多。

从细菌和藻类
到真菌和原生动物,

土壤是地球生物多样性四分之一的家园

也许土壤中最重要的
居民是微生物,这些

微生物不
超过几百纳米

,可以分解地球上所有
死亡和垂死的有机物质。

想象一下我们在森林里丢了一个苹果。

一旦它接触到土壤,

蠕虫和其他无脊椎动物就会开始
将其分解成更小的部分。

从他们消耗的食物中吸收营养,
并将其余的排出体外。

分解的第一
阶段为微生物奠定了基础。

存在的特定微生物
取决于环境。

例如,在草原和农田
中,细菌往往较多,

它们擅长分解
草和树叶。

但在这片温带森林
中,真菌较多,

能够分解
复杂的木质材料。

为了从苹果残骸中收获更多食物

这些微生物会释放酶

,引发一种称为氧化的化学反应

这会分解
有机物质分子,在称为矿化的过程中释放能量、

碳和其他营养物质

然后微生物会消耗碳
和一些营养物质,

而多余的氮、
硫、钙等分子

则留在土壤中。

随着昆虫和蠕虫吃掉
更多的苹果,

它们暴露出更多的表面积
供这些微生物

酶氧化和矿化。

甚至它们留下的排泄物
也是由微生物开采的。

这种情况一直持续到
苹果变成一无所有——

这个过程在温带森林中需要一到两个月的
时间。

炎热潮湿的环境

比寒冷干燥的地方支持更多的微生物,

使它们能够更快地分解事物

不太复杂的有机材料
分解得更快。

但是只要有足够的时间,

所有的有机物都会被还原
为微观的矿物质营养。

这些分子之间的原子键
太强而无法进一步分解。

因此,相反,
这些营养物质为植物生命提供食物,植物

生长出更多
最终会分解的食物。

这种不断创造和
分解的循环支持地球上的所有生命。

但也有一些环境
对这些多才多艺的微生物过于不利——

包括
英格兰柴郡郊外的泥炭沼泽。

泥炭沼泽主要由高
酸性泥炭藓组成。

这些植物使土壤酸化,
同时还释放出一种

与氮结合的化合物,从而
剥夺了该地区的养分。

除了北欧寒冷的
气温,

这些条件
使大多数微生物无法发挥作用。

由于没有什么可以分解它们

,死去的苔藓堆积起来,
阻止氧气进入沼泽。

结果是一个自然密封的系统。

任何进入泥炭沼泽的有机物都
原地不动——就像林道人一样。

沼泽酸的强度

足以溶解骨头等相对简单的物质

,它会使
皮肤和器官等更复杂的组织变成黑色。

但他的尸体
保存得非常完好

,我们可以确定
他很健康,20多岁,

而且可能很富有,
因为他的身体几乎没有劳累的迹象。

我们甚至知道林道人的最后一餐——

一块仍未消化的烧焦面包。

学者
们不太确定他的死因。

虽然冷血谋杀
是可能的,

但他的伤势严重
暗示了一种仪式牺牲。

即使在 2000 年前,

也有证据表明沼泽
以其几乎超自然的品质而闻名。

一个你脚下的土壤
既不死也不活的地方。