Why Earth may someday look like Mars Anjali Tripathi

Translator: Joseph Geni
Reviewer: Joanna Pietrulewicz

So when you look out
at the stars at night,

it’s amazing what you can see.

It’s beautiful.

But what’s more amazing
is what you can’t see,

because what we know now

is that around every star
or almost every star,

there’s a planet,

or probably a few.

So what this picture isn’t showing you

are all the planets that we know about

out there in space.

But when we think about planets,
we tend to think of faraway things

that are very different from our own.

But here we are on a planet,

and there are so many things
that are amazing about Earth

that we’re searching far and wide
to find things that are like that.

And when we’re searching,
we’re finding amazing things.

But I want to tell you
about an amazing thing here on Earth.

And that is that every minute,

400 pounds of hydrogen

and almost seven pounds of helium

escape from Earth into space.

And this is gas that is going off
and never coming back.

So hydrogen, helium and many other things

make up what’s known
as the Earth’s atmosphere.

The atmosphere is just these gases
that form a thin blue line

that’s seen here from
the International Space Station,

a photograph that some astronauts took.

And this tenuous veneer around our planet

is what allows life to flourish.

It protects our planet
from too many impacts,

from meteorites and the like.

And it’s such an amazing phenomenon

that the fact that it’s disappearing

should frighten you,
at least a little bit.

So this process is something that I study

and it’s called atmospheric escape.

So atmospheric escape
is not specific to planet Earth.

It’s part of what it means
to be a planet, if you ask me,

because planets, not just here on Earth
but throughout the universe,

can undergo atmospheric escape.

And the way it happens actually tells us
about planets themselves.

Because when you think
about the solar system,

you might think about this picture here.

And you would say, well,
there are eight planets, maybe nine.

So for those of you
who are stressed by this picture,

I will add somebody for you.

(Laughter)

Courtesy of New Horizons,
we’re including Pluto.

And the thing here is,

for the purposes of this talk
and atmospheric escape,

Pluto is a planet in my mind,

in the same way that planets
around other stars that we can’t see

are also planets.

So fundamental characteristics of planets

include the fact that they are bodies

that are bound together by gravity.

So it’s a lot of material
just stuck together

with this attractive force.

And these bodies are so big
and have so much gravity.

That’s why they’re round.

So when you look at all of these,

including Pluto,

they’re round.

So you can see that gravity
is really at play here.

But another fundamental
characteristic about planets

is what you don’t see here,

and that’s the star, the Sun,

that all of the planets
in the solar system are orbiting around.

And that’s fundamentally driving
atmospheric escape.

The reason that fundamentally stars
drive atmospheric escape from planets

is because stars offer planets
particles and light and heat

that can cause the atmospheres to go away.

So if you think of a hot-air balloon,

or you look at this picture
of lanterns in Thailand at a festival,

you can see that hot air
can propel gasses upward.

And if you have enough energy and heating,

which our Sun does,

that gas, which is so light
and only bound by gravity,

it can escape into space.

And so this is what’s actually
causing atmospheric escape

here on Earth and also on other planets –

that interplay
between heating from the star

and overcoming the force
of gravity on the planet.

So I’ve told you that it happens

at the rate of 400 pounds
a minute for hydrogen

and almost seven pounds for helium.

But what does that look like?

Well, even in the ’80s,

we took pictures of the Earth

in the ultraviolet

using NASA’s Dynamic Explorer spacecraft.

So these two images of the Earth

show you what that glow
of escaping hydrogen looks like,

shown in red.

And you can also see other features
like oxygen and nitrogen

in that white glimmer

in the circle showing you the auroras

and also some wisps around the tropics.

So these are pictures
that conclusively show us

that our atmosphere isn’t just
tightly bound to us here on Earth

but it’s actually
reaching out far into space,

and at an alarming rate, I might add.

But the Earth is not alone
in undergoing atmospheric escape.

Mars, our nearest neighbor,
is much smaller than Earth,

so it has much less gravity
with which to hold on to its atmosphere.

And so even though Mars has an atmosphere,

we can see it’s much thinner
than the Earth’s.

Just look at the surface.

You see craters indicating
that it didn’t have an atmosphere

that could stop those impacts.

Also, we see that it’s the “red planet,”

and atmospheric escape plays a role

in Mars being red.

That’s because we think
Mars used to have a wetter past,

and when water had enough energy,
it broke up into hydrogen and oxygen,

and hydrogen being so light,
it escaped into space,

and the oxygen that was left

oxidized or rusted the ground,

making that familiar
rusty red color that we see.

So it’s fine to look at pictures of Mars

and say that atmospheric escape
probably happened,

but NASA has a probe that’s currently
at Mars called the MAVEN satellite,

and its actual job
is to study atmospheric escape.

It’s the Mars Atmosphere
and Volatile Evolution spacecraft.

And results from it have already
shown pictures very similar

to what you’ve seen here on Earth.

We’ve long known that Mars
was losing its atmosphere,

but we have some stunning pictures.

Here, for example,
you can see in the red circle

is the size of Mars,

and in blue you can see the hydrogen
escaping away from the planet.

So it’s reaching out more than 10 times
the size of the planet,

far enough away that it’s
no longer bound to that planet.

It’s escaping off into space.

And this helps us confirm ideas,

like why Mars is red,
from that lost hydrogen.

But hydrogen isn’t
the only gas that’s lost.

I mentioned helium on Earth
and some oxygen and nitrogen,

and from MAVEN we can also look
at the oxygen being lost from Mars.

And you can see
that because oxygen is heavier,

it can’t get as far as the hydrogen,

but it’s still escaping
away from the planet.

You don’t see it all confined
into that red circle.

So the fact that we not only see
atmospheric escape on our own planet

but we can study it elsewhere
and send spacecraft

allows us to learn
about the past of planets

but also about planets in general

and Earth’s future.

So one way we actually
can learn about the future

is by planets so far away
that we can’t see.

And I should just note though,
before I go on to that,

I’m not going to show you
photos like this of Pluto,

which might be disappointing,

but that’s because we don’t have them yet.

But the New Horizons mission
is currently studying atmospheric escape

being lost from the planet.

So stay tuned and look out for that.

But the planets
that I did want to talk about

are known as transiting exoplanets.

So any planet orbiting a star
that’s not our Sun

is called an exoplanet,
or extrasolar planet.

And these planets that we call transiting

have the special feature

that if you look
at that star in the middle,

you’ll see that actually it’s blinking.

And the reason that it’s blinking

is because there are planets
that are going past it all the time,

and it’s that special orientation

where the planets are blocking
the light from the star

that allows us to see that light blinking.

And by surveying the stars
in the night sky

for this blinking motion,

we are able to find planets.

This is how we’ve now been able
to detect over 5,000 planets

in our own Milky Way,

and we know there are
many more out there, like I mentioned.

So when we look at the light
from these stars,

what we see, like I said,
is not the planet itself,

but you actually see
a dimming of the light

that we can record in time.

So the light drops as the planet
decreases in front of the star,

and that’s that blinking
that you saw before.

So not only do we detect the planets

but we can look at this light
in different wavelengths.

So I mentioned looking at the Earth
and Mars in ultraviolet light.

If we look at transiting exoplanets
with the Hubble Space Telescope,

we find that in the ultraviolet,

you see much bigger blinking,
much less light from the star,

when the planet is passing in front.

And we think this is because you have
an extended atmosphere of hydrogen

all around the planet

that’s making it look puffier

and thus blocking
more of the light that you see.

So using this technique,
we’ve actually been able to discover

a few transiting exoplanets
that are undergoing atmospheric escape.

And these planets
can be called hot Jupiters,

for some of the ones we’ve found.

And that’s because
they’re gas planets like Jupiter,

but they’re so close to their star,

about a hundred times closer than Jupiter.

And because there’s all this
lightweight gas that’s ready to escape,

and all this heating from the star,

you have completely catastrophic rates
of atmospheric escape.

So unlike our 400 pounds per minute
of hydrogen being lost on Earth,

for these planets,

you’re losing 1.3 billion
pounds of hydrogen every minute.

So you might think, well,
does this make the planet cease to exist?

And this is a question
that people wondered

when they looked at our solar system,

because planets
closer to the Sun are rocky,

and planets further away
are bigger and more gaseous.

Could you have started
with something like Jupiter

that was actually close to the Sun,

and get rid of all the gas in it?

We now think that if you start
with something like a hot Jupiter,

you actually can’t end up
with Mercury or the Earth.

But if you started with something smaller,

it’s possible that enough gas
would have gotten away

that it would have
significantly impacted it

and left you with something very different
than what you started with.

So all of this sounds sort of general,

and we might think about the solar system,

but what does this have to do
with us here on Earth?

Well, in the far future,

the Sun is going to get brighter.

And as that happens,

the heating that we find from the Sun
is going to become very intense.

In the same way that you see
gas streaming off from a hot Jupiter,

gas is going to stream off from the Earth.

And so what we can look forward to,

or at least prepare for,

is the fact that in the far future,

the Earth is going to look more like Mars.

Our hydrogen, from water
that is broken down,

is going to escape
into space more rapidly,

and we’re going to be left
with this dry, reddish planet.

So don’t fear, it’s not
for a few billion years,

so there’s some time to prepare.

(Laughter)

But I wanted you
to be aware of what’s going on,

not just in the future,

but atmospheric escape
is happening as we speak.

So there’s a lot of amazing science
that you hear about happening in space

and planets that are far away,

and we are studying these planets
to learn about these worlds.

But as we learn about Mars
or exoplanets like hot Jupiters,

we find things like atmospheric escape

that tell us a lot more
about our planet here on Earth.

So consider that the next time
you think that space is far away.

Thank you.

(Applause)

译者:Joseph
Geni 审稿人:Joanna Pietrulewicz

因此,当您
在夜晚仰望星空时,

您所看到的会令人惊叹。

很美丽。

但更令人惊奇的
是你看不见的东西,

因为我们现在知道的

是,在每颗恒星
或几乎每颗恒星周围,

都有一颗行星,

或者可能有几颗。

所以这张照片没有向你展示的

是我们所知道的太空中的所有行星

但是当我们想到行星时,
我们往往会想到

与我们自己非常不同的遥远事物。

但是我们在一个星球上,地球

上有很多
令人惊叹的东西

,我们正在四处
寻找类似的东西。

当我们搜索时,
我们会发现惊人的东西。

但我想告诉你
地球上的一件了不起的事情。

也就是说,每分钟有

400 磅氢气

和近 7 磅氦气

从地球逃逸到太空。

这是一种正在消失
并且永远不会回来的气体。

因此,氢、氦和许多其他物质

构成了所谓
的地球大气层。

大气层就是这些
气体形成了一条蓝色的细线

,从国际空间站在这里可以看到

这是一些宇航员拍摄的照片。

而我们星球周围的这种脆弱的外表

是让生命蓬勃发展的原因。

它保护我们的星球
免受太多撞击,

包括陨石等。

这是一个如此惊人的现象

,以至于它正在消失的事实

应该会吓到你,
至少是一点点。

所以这个过程是我研究的东西

,它被称为大气逃逸。

所以大气
逃逸并不是地球特有的。

如果你问我,这就是成为行星意味着什么的一部分,

因为行星,不仅在地球上,
而且在整个宇宙中,

都可以经历大气逃逸。

它发生的方式实际上告诉
我们行星本身。

因为当你
想到太阳系时,

你可能会想到这里的这张照片。

你会说,嗯,
有八颗行星,也许九颗。

所以对于
那些被这张照片感到压力的人,

我会为你添加一个人。

(笑声)

感谢 New Horizo ns,
我们包括冥王星。

这里的问题是,

为了这次谈话
和大气逃逸的目的

,冥王星在我心中是一颗行星,

就像
我们看不到的其他恒星周围的

行星也是行星一样。

因此,行星的基本特征

包括

它们是由重力结合在一起的物体。

所以很多材料
都被

这种吸引力粘在一起了。

这些天体如此之大
,重力如此之大。

这就是为什么它们是圆的。

所以当你看到所有这些,

包括冥王星,

它们都是圆形的。

所以你可以看到
重力真的在这里起作用。

但是
行星的另一个基本特征

是你在这里看不到的东西

,那就是恒星,太阳,

太阳系中的所有行星
都围绕它运行。

这从根本上推动了
大气逃逸。

从根本上说,恒星
驱动行星大气逃逸

的原因是,恒星为行星提供

了可能导致大气消失的粒子、光和热。

所以如果你想到一个热气球,

或者你看看这张
泰国节日灯笼的照片,

你会看到热空气
可以推动气体向上。

如果你有足够的能量和热量,就像

我们的太阳那样

,那么轻
且仅受重力约束的气体

就可以逃到太空中。

所以这实际上是
导致

地球和其他行星大气逃逸的原因——

来自恒星的热量

和克服
地球引力之间的相互作用。

所以我告诉过你,它


每分钟 400 磅氢气

和近 7 磅氦气的速度发生。

但那看起来像什么?

好吧,即使在 80 年代,

我们也

使用美国宇航局的动态探索者宇宙飞船在紫外线下拍摄了地球的照片。

因此,这两张地球图像

向您
展示了逸出的氢的辉光是什么样的

,以红色显示。

您还可以在圆圈中的白色微光中看到其他特征,
例如氧气和氮气

向您展示

极光以及热带周围的一些小束。

因此,这些
照片最终向我们展示

了我们的大气层不仅
与地球上的我们紧密相连,

而且它实际上
延伸到了遥远的太空,

而且以惊人的速度,我可能会补充说。

但地球并不是
唯一经历大气逃逸的人。

我们最近的邻居火星
比地球小得多,

所以它的引力要小得多
,可以用来保持大气层。

因此,即使火星有大气层,

我们也可以看到它
比地球的要薄得多。

只看表面。

你会看到陨石坑
表明它没有

可以阻止这些撞击的大气层。

此外,我们看到它是“红色星球”

,大气逃逸

在火星呈红色的过程中发挥了作用。

那是因为我们认为
火星曾经有一个更潮湿的过去

,当水有足够的能量时,
它会分解成氢气和氧气,

而氢气
太轻了,它逃到了太空中

,剩下的氧气被

氧化或生锈了地面,

使我们看到的那种熟悉的生锈的红色。

所以看火星的照片

说可能发生了大气逃逸
是没问题的,

但美国宇航局目前
在火星上有一个名为 MAVEN 卫星的探测器

,它的实际工作
是研究大气逃逸。

这是火星大气
和挥发性进化航天器。

它的结果已经
显示出

与你在地球上看到的非常相似的图片。

我们早就知道火星
正在失去大气层,

但我们有一些令人惊叹的照片。

例如,在这里,
您可以在红色圆圈中看到

火星的大小,

而在蓝色圆圈中,您可以看到氢气
从地球上逸出。

所以它的
范围是地球大小的 10 倍以上,

足够远以至于它
不再与那颗行星绑定。

它正在逃到太空中。

这有助于我们从丢失的氢中确认一些想法

,比如火星为什么是红色的

但氢气
并不是唯一丢失的气体。

我提到了地球上的氦气
和一些氧气和氮气

,从 MAVEN 我们也可以看到
火星上失去的氧气。

你可以看到
,因为氧气更重,

它不能像氢气一样远,

但它仍然在
逃离地球。

你看不到它全部被限制
在那个红色圆圈中。

因此,我们不仅可以
在我们自己的星球上看到大气逃逸,

而且可以在其他地方研究它
并发送航天器

,这一事实使我们能够
了解行星的过去,

也可以了解行星的总体情况

和地球的未来。

因此,我们实际上
可以了解未来的一种方法

是通过
我们看不到的遥远的行星。

不过我应该注意的是,
在我继续之前,

我不会给你看
像这样的冥王星照片,

这可能会令人失望,

但那是因为我们还没有这些照片。

但新视野号任务
目前正在研究

从地球上消失的大气逃逸。

所以请继续关注并注意这一点。


我确实想谈论的行星

被称为凌日系外行星。

因此,任何围绕
不是我们太阳的恒星运行

的行星都被称为
系外行星或系外行星。

这些我们称之为凌日的行星

有一个特殊的特征

,如果你看
中间的那颗恒星,

你会发现它实际上在闪烁。

它闪烁的原因

是因为总有
行星经过它

,正是

行星阻挡
来自恒星的光线的特殊方向

让我们看到光线闪烁。

通过观察
夜空中的星星

来寻找这种闪烁的运动,

我们能够找到行星。

这就是我们现在能够在我们自己的银河系
中探测到 5,000 多颗行星的

方式,

而且我们知道
那里还有更多,就像我提到的那样。

因此,当我们观察这些恒星发出的光时

,就像我说的,我们看到
的不是行星本身,

而是您实际上看到

了我们可以及时记录的光变暗。

所以随着行星
在恒星前面的减少,光线会下降

,这
就是你之前看到的闪烁。

因此,我们不仅可以检测行星,

还可以观察
不同波长的光。

所以我提到
在紫外线下观察地球和火星。

如果我们用哈勃太空望远镜观察凌日系外行星

我们会发现在紫外线中,当行星从前面经过时,

你会看到更大的闪烁,
更少的来自恒星的光

我们认为这是因为地球周围有
一个扩展的氢气大气层,

这使它看起来更膨胀

,从而阻挡了
更多你看到的光。

因此,使用这种技术,
我们实际上已经能够

发现一些正在经历大气逃逸的凌日系外行星

对于我们发现的一些行星,这些行星
可以称为热木星

那是因为
它们是像木星一样的气体行星,

但它们离它们的恒星太近了,

比木星近一百倍。

而且因为所有这些
轻质气体都准备好逸出

,所有这些来自恒星的热量,

你有完全灾难性
的大气逸出率。

因此,与地球上每分钟损失 400 磅
的氢气不同,

对于这些行星

,每分钟损失 13 亿
磅的氢气。

所以你可能会想,好吧
,这会让地球不复存在吗?

这是

人们在观察我们的太阳系时想知道的一个问题,

因为
离太阳近的行星是岩石的,

而离太阳越远的行星
越大,气态越多。

你能从
像木星

这样实际上靠近太阳的东西开始,

然后把里面的所有气体都去掉吗?

我们现在认为,如果你从
热木星之类的东西开始,

你实际上不可能
以水星或地球结束。

但是,如果您从较小的东西开始

,可能会有足够的气体
流失

,从而对其产生
重大影响,

并给您留下与
开始时截然不同的东西。

所以所有这些听起来有点笼统

,我们可能会想到太阳系,

但这
与地球上的我们有什么关系?

好吧,在遥远的未来

,太阳会变得更亮。

当这种情况发生时

,我们从太阳中发现的热量
将变得非常强烈。

就像你看到
气体从热木星流出一样,

气体也会从地球流出。

因此,我们可以期待

或至少做好准备的

是,在遥远的未来

,地球将看起来更像火星。

我们的氢,来自
分解的水

,将更快地逃逸
到太空中

,我们将被留
在这个干燥、微红色的星球上。

所以不要害怕,这
不是几十亿年,

所以还有一些时间准备。

(笑声)

但我想让
你知道正在发生的事情,

不仅仅是在未来,

而是
在我们说话的时候,大气逃逸正在发生。

所以你听说了很多关于在

遥远的太空和行星上发生的惊人科学,

我们正在研究这些行星
以了解这些世界。

但是,当我们了解火星
或热木星等系外行星时,

我们会发现诸如大气逃逸之类的事物

可以告诉我们更多
关于地球上我们星球的信息。

因此,下次
您认为空间很远时,请考虑一下。

谢谢你。

(掌声)