Advanced materials everyone can afford including Nature

[Music]

my name is marcus buehler i am the

mcafee professor of engineering at mit

and my goal is to create bio-inspired

sustainability

we want to be able to create almost any

function out of almost any material by

using

nature’s hierarchical design approach

that reassembles molecules to create

functional diversity out of universal

building blocks

this is a powerful paradigm that i

believe will change the way we construct

as engineers the way we

design as engineers and the way we can

actually address the sustainability

challenges that we’re facing today

the world in 30 years is going to look

very different than the world today

we’ll have a changing climate

and additional constraints on the

environment we have higher population

densities we have less resources likely

and we’re going to have more waste and

this waste is going to include more

chemical diversity and

maybe even nanostructures we also have

different climate conditions

we have changes in temperature and

humidity that we’ll have to deal with

on the other hand we have a lot of hope

and opportunities ahead of us

we expect major breakthroughs in

nanotechnology

we can assemble materials atom by atom

we can discern transformations using the

existing building blocks in waste or in

existing materials to designer materials

that are made

atom by atom and constructed molecule by

molecule with tailored

desirable functions we’ll also be able

to engineer living organisms

biomaterials and look to nature for

inspiration we can work with nature

instead of against nature and create new

solutions for humanity

biomass waste and advanced materials are

inextricably linked and provide major

opportunities for the future

biomass for instance is a renewable

material it’s a carbon sink

and it’s easily available today already

at 1 billion tons per year in the united

states

we can then use these biomass based

materials to create carbon materials

nanomaterials composites

or even energy materials such as

electrodes and batteries

the paradigm we’re using is called

meteoromics the design material is atom

by atom

just like nature constructs materials

with advanced function from virtually

any resource

we can use the meteorological approach

to build materials molecule by molecule

with advanced function

to do this we look at materials at

multiple levels from the nano scale all

the way to the macro scale

at the nano nanoscale we’re dealing with

chemistry the assembly of molecules

how molecules form micro nanostructures

and mesoscale structures

which then in turn assemble into

hierarchical levels

all the way up to the macro level that

we can see with our eyes

this multiscale structuring is really

the hallmark by which

biological living organisms are

constructed and their exemplary

manifestations of

biorefineries nature is able to

refine materials reconstruct reorganize

materials

from virtually any source we think about

spiders for instance spiders are amazing

species they build spider webs

in two dimensions and three dimensions

they create

very complex material constructions for

various purposes such as protecting

their prey

protecting their young their offspring

and these silk materials are all made

from what we call proteins or amino

acids

another kinds of protein materials are

those found in the ocean such as the

glues in marine materials like muscles

they create incredible glue materials

that work underwater in sea water under

virtually any conditions

we also find biological materials made

from proteins in the human body

such as in our cells in our nerve cells

in our skin cells to organ cells

virtually anywhere we are made from

proteins proteins are

nature’s choice to build materials and

proteins are really constructed from

very simple chemical building blocks

called amino acids these amino acids are

the same building blocks

wherever you look in nature however they

create an astonishing

array of diversity and properties out of

universality comes diversity

that’s the hallmark of nature can we

mimic these processes and construct

superior materials from universal or

simple building blocks

this might help us solve the

sustainability crisis we’re facing today

in fact nature uses this hierarchical

patterning approach to construct

materials nano to macro

and we can create multi-functionality

even by reassembling nature’s building

blocks

along the way as we need them that way

we can make materials that aren’t static

anymore these materials can be adjusted

modified

as the need changes we call this the

universality diversity paradigm which is

one of the most

foundational aspects of how materials

are used in nature

and could provide an important clue an

important solution to the climate crisis

we’re facing

think about a tree growing from a seed

forming the first leaves

these leaves grow provide photosynthesis

great biomass

the leaves fall off in the fall they rot

and they create new soil

and the cycle repeats these kind of

biological mechanisms where

creation of structures is repeated and

recycled

is foundational in nature we look at

biomass

like old leaves or wood or many other

kinds of tailings that we find in nature

they have a very rich set of chemical

foundations within them

these chemical building blocks of

molecules can be utilized if we manage

to reassemble them to create almost any

material function we might need

that’s what nature does when you think

about a spider a spider will eat a fly

and break down the amino acids the

proteins in the fly’s body

to reassemble them to make silk which

one of the which is one of the strongest

materials known

it’s an amazing polymer silk is not made

from petroleum

silk is made from a renewable resource

silk is made from biomass from waste

we cannot yet do that we cannot yet

mimic these processes fully in the

laboratory but provides an

amazing opportunity for future engineers

for scientists to create this future

economy in which we can recycle or

reassess

material combinations from the nano to

the macro level

the paradigm that nature uses is out of

simplicity

emerges complexity and structure and

superiority function and form

we use a multi-skill modeling approach

to address this issue and to solve this

pressing engineering challenge we

simulate materials out and by atom

through the scales from molecular

dynamics to coarse grain simulations all

the way to the continuum level where we

simulate materials

as a macroscopic object that has no

internal structure

by integrating multiple simulation

paradigms we can provide powerful

solutions to how materials work and

function

and we can design them for instance

think about a spider web we can look

inside the spider web

and see that the spider web has internal

structures there are atoms inside

molecules proteins inside and these

proteins are assembled in certain

architectures

if we understand how these proteins are

assembled we can mimic this we can make

our own protein materials

we don’t necessarily have to make a

spider web we can make materials that we

need for

for engineering for instance filtration

devices batteries

structural materials for construction

and the list goes on

this bottom bottom-up approach is very

powerful and can provide a direct

connection between the genetic sequence

in a material

all the way to the functional level we

can either engineer the dna

to design how proteins fold or we can

make materials in the laboratory

synthetically and assemble them atom by

atom

thereby we can take advantage of

foundational processes like size effects

and materials where

the small scale the small length scales

that can be controlled by these

nanotechnological approaches

can provide superior function in other

words materials can become resilient

if we make the nanostructures small

enough so they can prevent

from fracturing and being fragile that’s

one paradigm in which nature uses

defects

to the contrary defects are used to

create strength

out of weakness comes strength and the

key to this is architecture all the way

down to the nano scale by creating

confinement effects where geometry

plays a key role the hierarchical design

paradigm is a very powerful way

used by nature to generate function out

of weak building blocks

for example you can look at bone bone is

made from two components protein like

jello which is very wobbly

and chalk or minerals which are very

fragile and brittle

by combining jello and chalk into a

material

across hierarchical structuring bone is

created and bone is one of the toughest

materials we know

similar materials are seashells like

conch shells which have very very high

toughness values

we’re using this approach to design with

nature instead of against nature

provide solutions that are sustainable

and work with nature

we’ve utilized this approach in a

variety of ways for instance we’ve

utilized

silk made by silkworms and created

cocoons and then re-engineered the

materials in this cocoons to 3d print it

into

various kind of textiles into very

strong materials into tunable materials

or even medical devices or even engines

or motors we can use for tunability and

functional materials i’ve also made

filtration devices out of silk

a simple process where we reassemble and

microstructures the nanostructures that

nature is creating in the in the

formation of silk fibrils

we can create manual porosity mimicking

the structure of silk cocoons

but scaling them down all the way down

to the nano levels so we can filter

out molecules this might be another

powerful way to address pollution

silicon inspired materials and devices

are very interesting because silk is a

biomaterial

that’s compatible with the human body

and other environmental systems

it’s not a synthetic polymer it’s

something that nature creates you can

eat it

and you can work with it and it’s

inexpensive so creating filtration

devices out of silk

or advanced electronics is a powerful

way of working with nature instead of

against nature

the filtration devices are very

effective and can filter out very small

molecules such as heavy metals

metal particles and other kind of

organic substances

a second approach we’ve been exploring

in my laboratory is to use waste

and rearrange the molecules inside the

waste to create

future patterns of molecules that

resemble those

found in nature in other materials to

create superior function

thereby we can mimic what the spider

does the spider will eat flies

have offspring create new silk and these

silks are powerful and very effective

in creating advanced function we can

mimic this by using a process called

hydrothermal processing or hdp in which

we use

pressure and temperature to create new

materials

by using high temperature and high

pressure we can use water as a solvent

instead of relying on petrochemical

other aggressive chemical substances

which are toxic using water in a

supercritical state

allows us to create a reactor condition

in which we can transform

biomass or waste into three main

components a

solid which is a carbon-rich material a

biofuel which provides a foundation of

creating alternative petrochemical

sources

as well as a liquid phase which can be

utilized as an adhesive

we’ve also mixed these biomass sources

that we’ve extracted from hydrothermal

processing

with silk thereby we can mimic what

nature does

combining an existing material like silk

which is amazing

which has amazing properties with the

kinds of materials that nature has

created

you through waste using this

hydrothermal process by combining the

processes created using hydrothermal

processing

with other biological materials like

silk we can create composite materials

and take advantage of the best

properties of both components

and engineer new properties into this we

can develop for instance conductive and

flexible biomaterials

that can reach strength and

cytocombability by using silk

we can also reach environmental friendly

less expensive processing conditions and

packaging conditions for food for

instance

to enhance materials further by using

grapheno carbon nanotubes

we can overcome the suitability issue of

conventional grapheno carbon nanotube

materials

by using kite in the wood or activated

carbon in a recent research study we’ve

used

shrimp waste to create chitin-rich

materials that we’ve then

processed in the hydrothermal processing

plant to create

materials that we’ve used to make

electrodes for flow batteries

this could provide a solution to both

the waste problem

as well as providing new battery

technologies that can be very powerful

in storing alternative sources like

solar or wind

we’ve also used waste from chemical

treatment plants or sewage treatment

plants

for example from the deer island

facility near boston and

use sewage sludge to process it using

hydrothermal processing to create

a biocode mimicking oil as biobinders as

an adhesive for use in adhesive

construction industry for instance

in all this work we’re paying close

attention to the techno-economic

analysis in other words

how economically feasible these

processes are and it turns out they are

feasible

if we can scale it up we’re actually

able to utilize waste

by using this nanotechnology

nanoengineering approach to transform

the ingredients to transform the waste

into functional and usable materials we

can also use these products to create

new types of adhesives

for wood-based products for example

particle wood

or plywood where we need a glue or

adhesive to con construct

materials that have strong binding

between wood particles and the

surrounding faces

using biomass provides a way of

utilizing waste

either from sewage plants or perhaps

waste from wood facilities

for example sawdust to combine these

together with existing wood technologies

to create new types of paneling that are

formaldehyde-free

and work on a low energy sustainable

economic cycle

another exciting direction of this work

is to utilize these biomass-based

waste streams and transformations in the

creation of 3d printing materials or

inks

once we have transformed a biomass or

waste into an ink material we can

construct

any geometry any architecture we can

begin to assemble materials atom by atom

from the nano to the micro to the miser

to the macro level all from these waste

materials

the function of materials derives from

the hierarchical patterns across

different scales

nature has taught us how effective this

paradigm is the concept is now

can we learn from computational methods

how to actually construct these

materials

you can imagine if you’re thinking about

hierarchical patterning the design space

is gigantic it’s very big

and it’s very difficult to find

solutions for where to put materials

what to print or what kind of materials

to actually make in the first place

that’s why we use machine learning and

artificial intelligence to solve this

problem

in machine learning we have methods that

can very accurately capture

hierarchical patterns think about image

recognition or face recognition

these algorithms for example implemented

in convolutional neural networks

use deep layers within the neural

network to detect features across

length scales and time scales these

features are used to decide whether an

image or photo

is a car tree or cat or dog in our case

we’re using these convolutional neural

networks to determine

what function the material has by

looking at its microstructure across

length scales from the protein length

scale which is basically the code of dna

the chemical composition the micro scale

the mesoscale all the way to the macro

scale shape and form of the material

deep learning is a powerful way of

capturing structured process function

relationships that are otherwise very

difficult to understand

the many other machine learning methods

that can be used in addition to

convolutional neural networks

such as deep learning based methods

based on game theory or

gans generative adversarial neural

networks which basically implement a

game theoretic approach where multiple

neural networks

multiple ais play games with each other

to find solutions to physics problems

these solutions can not only be

the solution to a physics problem like

the equilibrium forces but they can also

be

the solution to a design problem where

the algorithm will determine the optimal

design given a set of constraints

this is extremely exciting because it

enhances human creativity

in fact we can complement or supplement

human creativity by creating

augmented reality or virtual reality

environments where we can interact with

the ai system

with our senses and we can make things

seem that we cannot yet see

like forces in a material by going into

an augmented reality environment

we can see forces for instance we can

see magnetic fields

we can see things that our own senses

our own eyes cannot yet recognize

but the ei algorithm can make it visible

to our senses

and we can then use this in the design

process in other words we can see

the immediate impact of how changing the

process the nano structure

the meso scale structure the shape of a

material affects certain properties

properties we can usually not see which

are however very important for

engineering applications

like the forces in the material are

critical to prevent materials from

breaking

now we can see them using ai and

algorithmics algorithmic development is

like virtual reality

that way we can push the frontier to the

next level in which we understand how

hierarchical structures can result in

defect halloween behavior

for instance we can make materials from

waste that are superior

that are superior in strength and

resilience in other words they’re very

hard to break

think about glass glass breaks very

easily however

we don’t want to build with glass

because we don’t want to build a

structure a house a car a train an

airplane out of blast it’s very fragile

using nature’s design paradigm we can

transform brittle elements like minerals

or glass particles

into structures that are very tough as a

whole by creating these architectural

features

from the nano to the macro scale and ai

methods can teach us

how to assemble these patterns these

building blocks

this is very similar to the kinds of

problems people have already solved

using ai methods like how to play chess

or go

which can be very effective and have

proven to be a very powerful way of

solving

complex game theoretic approaches now

we’re using ai machine learning to solve

similar problems

but instead of solving how to play go we

can solve the problem the puzzling

problem

of how to design the best possible

material out of waste

that is an exciting future that allows

us to mimic nature

and yet train the problem develop a

problem solution that mimics it

such that we provide solutions for our

own problems for own challenges that

we’re facing today

such as creating high volume tough

resilient materials

green materials carbon sinks or to

create electrodes for batteries or

filtration devices or

robots or materials that have actuation

properties that are smart that can

interact with the environment

these are all challenging problems of

materials design that need

a revolutionary approach such as ai and

machine learning

now to make these materials we can use

3d printing we talked earlier about 3d

printing as a powerful way

of assembling materials atom by atom

micro by micro

all the way to the macro level in fact

we’re using these multi-scale

additive manufacturing techniques to

then assemble these waste stream derived

inks

into materials that can then be created

and applied in various industrial

settings

we can make materials with tailored

properties we can dial in we can decide

exactly

what kind of strength the material

should have kind of elasticity

when it should break what kind of

tunability properties it should have

or how it would interact with the human

body in cells or animals or other types

of environmental systems

and all of these materials can be made

with nature they can be made out of

polymers or chemicals

that are actually found in nature so

think back about the material like silk

silk is found in nature proteins are

found in nature all of us are living

examples of how nature uses proteins to

build life

now we can create new material solutions

new technologies new electronics the

future of computing perhaps

future computing architectures out of

these silk based

or protein based or amino acid based

materials which are exciting solutions

genetic algorithms allow us to provide a

simulation of evolutionary processes

by combining it with ai and machine

learning which provides

very quick very rapid computational

solutions to complex physics problems to

understand how

design changes affect changes in the

fitness or performance

by combining these ai methods with

genetic algorithms we can essentially

simulate evolution

and within a couple of hours or days in

a computer simulation design

optimal proteins these are all solutions

that can be made today

and that we’re working very hard at mit

in my lab

to create future possibilities for

future generations

to thinking the work with nature instead

of against nature and providing

a platform to use waste as a way to

create the future of materials

the experimental testing that can be

carried out based on the materials we

have created

can be fed back right into the ai model

and therefore create a reinforcement

learning approach where

the performance measured in the

laboratory can

improve the model itself and thereby

improve the design experience overall

now the human input the

human creative input the input of the

engineer comes in

through these augmented reality virtual

reality setups where

we can interact with the computational

models in different ways

we can see things we cannot yet see like

internal forces electricity

magnetic forces or other things and we

can augment the picture the

images that we can see with our eyes

through these ai methods very

effectively

in the augmented reality of virtual

reality setup

through these methods we’re hoping to

mimic nature we’re trying to work

with nature instead of against nature if

we want to address the climate challenge

if you want to address the

challenges that we are facing in future

generations in terms of sustainability

creating more food more resilience more

resources for growing population in the

world

we have to look at nature and we have a

great opportunity now with

nanotechnology

emerging as one of the most exciting

trends in science and engineering

and a platform technology combined with

computational modeling like ai and

machine learning

we can put these things together and

create solutions for future generations

that mimic nature and they build on

nature and work with nature

the future of engineering lies in

thinking about how

natural materials are designed how

they’re created how they interact

the future of materials also features

living materials materials that aren’t

static today’s engineers create

materials that are made in the factory

after they’ve been designed by an

engineer and then shipped off to the

consumer or applied

in a product and they have a lifetime

and they fail and have to be repaired

now that’s a very different paradigm

than the kind of paradigm that nature

uses

uh think about our own body our bones

they grow and if you hurt your bones you

hurt your skin

our body will try to repair these and in

many cases our body is very effective in

repairing injuries or diseases

and we are trying to get to the point

where future materials future

technologies work

just like this where we can actually

mimic the paradigm instead of creating

materials

one time and then repairing them we’re

trying to mimic this paradigm where

instead of creating materials

and shipping them off to the consumer

until they fail we

built in a repair feature we built in

the ability of a material to be

living to be more like us the material

to be more like

human beings more like insects more like

the living world around us

and being able to sense damage to

respond to the environment

and to create entirely new solutions for

engineering solutions in that way

where of course the human need the human

demand for civilization is at the center

of this

and we can work with sustainable

solutions that are carbon sinks

that use waste materials that use the

immense complexity the richness of all

the chemical waste all the chemical

tailings we have today

in the construction of materials the key

to making this happen

are three one nanotechnology to use the

ability to construct materials atom by

atom molecule molecule

second computation to use computation as

a way of understanding

what to build what to design and three

to be able to measure and sense the

environment

either using augmented or virtual

reality or advanced experimental imaging

measurements where data can be generated

in large amounts

which in turn can improve the way we

model using the artificial intelligence

method for instance

to use a reinforcement learning approach

to improve models

as we go along finally this is changing

the way engineers work

the way the physical world is modeled

goes back today

pretty much to newton’s laws where we

solve equations like differential

equations

that have been written down on a piece

of paper the future

might rely on an alternative approach or

complementary approach where in addition

to solving equations like newton’s laws

schrodinger’s equation and others like

this we can also

generate data and behavior and

understand the behavior of physical

systems

directly from observations so instead of

having newton observe how an apple falls

from the tree and then deriving a model

for this

computers can do similar things

computers can observe

how physical systems or living systems

act interact behave

how they work and then from that derive

a

deep learning or neural network based

architecture

one of the biggest threats to climate

change is the use of resources

and that’s what this research really is

about the approach used by nature is

quite distinct

when nature uses the same chemical

ingredients so instead of using

limestone like for cement

or petroleum or other types of

ingredients nature uses

the same chemical building blocks amino

acids to create virtually any function

these protein-based materials have

functions as diverse as acting as a glue

as a sensor as a robot material a

robotic material that has

activation properties that can sense the

environment i can act as a signaling

material like a cable for nerve cells

for instance

it act as a very strong material like

seen in silk being one of the strongest

materials known stronger than steel

and the list goes on these materials are

exciting they’re powerful

and yet they’re made from the same

chemical building blocks so to address

the climate challenge

we believe we need to go to that mode of

operation we want to be able to be in a

position

where we can actually create almost any

function out of almost

any feature

[音乐]

我的名字是 marcus buehler,我是麻省理工

学院 mcafee 工程学教授,

我的目标是创造受生物启发的

可持续性,

我们希望能够

通过

使用

大自然的分层设计方法

,用几乎任何材料创造几乎任何功能,重新组装 分子

从通用

构建块中创造功能多样性

这是一个强大的范例,我

相信它将改变我们作为工程师的构建方式、我们

作为工程师的设计方式以及我们

实际应对当今世界面临的可持续发展

挑战的方式

30 年后

的世界将会与今天的世界大不相同

我们将面临气候变化

和对环境的额外限制

包括更多的

化学多样性

甚至纳米结构 我们也有

不同的气候条件

我们有温度变化 另一方面

,我们必须应对的电子和湿度

我们有很多希望

和机遇 我们期待

纳米技术的重大突破

我们可以逐个原子地组装材料

我们可以使用

废物中的现有构件来辨别转变 或在

现有材料中设计材料

逐个原子制造,逐个分子构建,

具有量身定制的

理想功能

人类

生物质废物和先进材料的新解决方案

密不可分,并为未来提供重大

机遇,

例如,生物质是一种可再生

材料,它是一种碳汇

,今天很容易

在美国以每年 10 亿吨的速度获得,

然后我们可以使用 这些生物质基

材料制造碳材料

纳米材料复合材料

甚至 能源材料,例如

电极和电池

我们使用的范式称为

气象学 设计材料是

逐个原子的

,就像大自然

从几乎任何资源中构造具有高级功能的材料

我们可以使用气象学方法

逐个分子地构建

具有高级功能的材料

为了做到这一点,我们

从纳米尺度

一直到宏观尺度

在纳米尺度上观察多个层次的材料 我们正在处理

化学 分子的组装

分子如何形成微纳米结构

和中尺度结构

,然后再组装成

层次结构

一直到

我们肉眼可以看到的宏观水平

这种多尺度结构确实

是构建生物生物体的标志

,它们是

生物

精炼厂的典型表现 自然能够

提炼材料

从我们几乎任何来源重建重组材料 考虑一下

即时蜘蛛 ce 蜘蛛是令人惊叹的

物种,它们

在二维和三维中构建蜘蛛网,

它们为各种目的创造了

非常复杂的材料结构,

例如保护

猎物、

保护它们的后代

、这些丝材料都是

由我们所说的蛋白质或氨基酸制成

的。 各种蛋白质材料是

在海洋中发现的,例如海洋材料中的

胶水,如肌肉,

它们创造出令人难以置信的胶水材料

,几乎可以在任何条件下在海水中工作

我们还发现由

人体中的蛋白质制成的生物材料,

例如我们 我们的神经细胞

皮肤细胞 到器官细胞

几乎在我们由蛋白质制成的任何地方

蛋白质是

大自然制造材料的选择,而

蛋白质实际上是由称为氨基酸的

非常简单的化学构件构成

的 这些氨基酸在任何地方

都是相同的构件

看看大自然,但他们

创造了一个惊人的 g

来自普遍性的一系列多样性和特性带来了多样性

,这是大自然的标志 我们能否

模仿这些过程并

从通用或

简单的构建块构建优质材料

这可能有助于我们解决

我们今天面临的可持续发展危机

事实上大自然使用这种分层

图案化方法来构建

纳米到宏观的材料

,我们

甚至可以通过在需要时重新组装自然的构建

块来创建多功能性,这样

我们就可以制造不再是静态的

材料这些材料可以根据需要进行调整

修改 我们称之为

普遍性多样性范式,它

是自然界中如何使用材料的最基本方面之一

,可以提供重要线索,

为我们面临的气候危机提供重要解决方案

想想从种子中长出的树,

形成第一棵树 叶子

这些叶子生长 提供光合作用

巨大的生物量

叶子脱落 秋天,它们腐烂

,它们产生新的土壤

,循环重复这些

生物机制,

重复和回收结构的创造

是自然界的基础

它们内部有一组非常丰富的化学

基础,

如果我们设法

重新组装它们以创造

我们可能需要的几乎任何物质功能,就可以利用这些分子的化学构件,

这就是当你

想到蜘蛛时,蜘蛛会吃掉

苍蝇分解氨基酸

苍蝇体内的蛋白质

重新组装成丝 其中

一种是已知的最强

材料之一

它是一种神奇的聚合物丝 不是

由石油

制成的 丝是由可再生资源

制成的 丝是 由废物中的生物质制成,

我们还不能做到,我们还不能

在实验室中完全模拟这些过程,

但提供了一个

惊人的机会 为未来的工程师

为科学家创造未来的

经济 在其中我们可以回收或

重新评估

从纳米

到宏观层面

的材料组合 自然使用的范式是出于

简单而

出现的复杂性和结构以及

优越性 功能和形式

我们使用多种技能 建模方法

来解决这个问题并解决这一

紧迫的工程挑战,我们

通过从分子

动力学到粗粒模拟

一直到连续体水平的尺度逐个原子地模拟材料,在此我们将

材料模拟

为没有内部结构的宏观物体

通过集成多种模拟

范例,我们可以

为材料的工作原理和功能提供强大的解决方案,

并且我们可以设计它们例如

考虑蜘蛛网我们可以查看

蜘蛛网内部

并看到蜘蛛网具有

内部结构分子内部有原子

蛋白质 里面,这些

蛋白质在一定的ar中组装

结构

如果我们了解这些蛋白质是如何

组装的,我们可以模仿它 我们可以制造

我们自己的蛋白质材料

我们不一定要制造

蜘蛛网 我们可以制造我们

工程所需的材料 例如过滤

设备 电池

结构材料 用于建筑

这种自下而上的方法非常

强大,可以

在材料

中的基因序列一直到功能水平之间提供直接联系,我们

可以设计 dna

来设计蛋白质如何折叠,或者我们可以

制造材料 在实验室中

合成并逐个原子组装它们,

因此我们可以利用

尺寸效应和材料等基础过程

,其中

可以通过这些

纳米技术方法控制的小尺度小长度尺度

可以提供卓越的功能,

换句话说,材料可以变得有弹性

如果我们把纳米结构

做得足够小,这样它们就可以

防止 断裂和脆弱,

这是自然界利用缺陷的一种范式,

相反,缺陷被用来从弱点中

创造力量,力量

就是力量,

而这一点的关键是

通过创造限制效应,一直到纳米尺度的建筑,

其中几何学

起着关键作用 角色分层设计

范式

是大自然用来

从弱构建块

中产生功能的一种非常强大的方式,例如,你可以看到骨骼骨骼是

由两种成分制成的

通过将果冻和粉笔组合成一种

跨层次结构的材料

而变得脆弱 骨骼是我们所知道的最坚韧的材料之一

类似的材料是贝壳,如

海螺壳,具有非常高的

韧性值

我们使用这种方法来设计与

自然相反 反对自然

提供可持续的解决方案

并与自然合作

我们已经利用了这一点 以

多种方式进行方法,例如,我们

利用蚕制成的丝绸制作

茧,然后重新设计

茧中的材料,将其 3D 打印

各种纺织品,制成非常

坚固的材料,制成可调材料

,甚至医疗设备或 甚至

我们可以用于可调性和

功能性材料的发动机或马达我还用丝绸制作了

过滤装置,这是

一个简单的过程,我们重新组装和

微结构

自然在

形成丝原纤维时产生的纳米结构

我们可以手动创建孔隙模拟

蚕茧的结构,

但将它们一直缩小

到纳米级,这样我们就可以过滤

掉分子 这可能是

解决污染的另一种有效方法

硅启发材料和设备

非常有趣,因为丝绸是一种

与人类相容的生物材料 身体

和其他环境系统

它不是合成聚合物 它

是大自然创造的东西 你可以

吃它

,你可以用它工作,而且它很

便宜,所以

用丝绸

或先进的电子设备制造过滤装置是一种

与自然而不是

违背自然

的强大方式。过滤装置非常

有效,可以过滤掉非常小的

分子,如 作为重金属、

金属颗粒和其他种类的

有机物质,

我们在实验室中探索的第二种方法

是利用废物

并重新排列

废物中

的分子,以创造未来的分子模式,

类似于

自然界中在其他材料中发现的分子模式,以

创造 卓越的功能

因此我们可以模仿

蜘蛛会做什么蜘蛛会吃苍蝇

有后代创造新的丝绸这些

丝绸在创造高级功能方面强大且非常有效

我们可以

通过使用称为

水热处理或hdp的过程来模仿这一点

我们使用

压力 和温度

通过使用高温和高压来创造新材料,

我们可以使用wa ter 作为溶剂,

而不是依赖于石化,

其他腐蚀性化学

物质在超临界状态下使用水是有毒的,这

使我们能够创造一种反应器条件,

在这种条件下,我们可以将

生物质或废物转化为三种主要

成分,

一种是富含碳材料的固体 一种

生物燃料,它为

创造替代石化

资源

以及可用作

粘合剂的液相提供了基础

一种现有的材料,如丝绸

它具有惊人的特性,与

大自然

使用这种

水热工艺通过废物

创造的各种材料具有惊人的特性。通过将水热加工产生的

工艺

与其他生物材料(如

丝绸)相结合,我们可以创造复合材料

并利用

两个组件的最佳性能

并为此设计新的特性 我们

可以开发例如导电和

柔性的生物材料

,通过使用丝绸可以达到强度和

细胞相容性

我们还可以达到环境友好、

成本更低的食品加工条件和

包装条件,例如

通过使用石墨烯碳纳米管进一步增强材料

我们可以

通过在木材中使用风筝或活性炭来克服传统石墨烯碳纳米管材料的适用性问题

在最近的一项研究中,我们

使用

虾废料来制造富含几丁质的

材料,然后我们

在水热加工厂进行加工

创造

我们用来制造

液流电池电极的材料,

这可以

解决废物问题

,并提供新的电池

技术,这些技术可以非常强大

地储存太阳能或风能等替代能源,

我们也使用过来自 化学

处理厂或污水处理

厂 例如,来自

波士顿附近的鹿岛设施,并

使用污水污泥对其进行

水热处理,以创建

一种生物代码,模拟油作为生物粘合剂作为

粘合剂,用于粘合剂

建筑行业例如

在所有这些工作中,我们密切

关注技术 -经济

分析,换句话说,

这些

过程在经济上的

可行性,

如果我们可以扩大规模,它们

是可行

的 可用材料 我们

还可以使用这些产品

为木质产品(例如

刨花木

或胶合板)

制造新型粘合剂

一种

利用

污水厂

废物或木材废物的方法 设施

,例如锯末,将这些

与现有木材技术

相结合,创造出无甲醛的新型镶板,

并致力于低能源可持续

经济循环

。这项工作的另一个令人兴奋的方向

是利用这些基于生物质的

废物流和转化

创造 3D 打印材料或

墨水

一旦我们将生物质或

废物转化为墨水材料,我们可以

构建

任何几何结构,我们可以

开始逐个原子地组装材料,

从纳米到微观,从吝啬

到宏观层面所有 从这些废弃

材料中,

材料的功能源自

不同尺度的分层模式

自然告诉我们这个

范式是多么有效 这个概念现在

是我们可以从计算方法中学习

如何实际构建这些

材料

如果你正在考虑,你可以想象

分层图案设计空间

是巨大的它非常大

而且它是ve 很难

找到将材料放在哪里的解决

方案 打印什么或实际制作什么样的材料

这就是为什么我们使用机器学习和

人工智能来解决

机器学习中的这个问题 我们有方法

可以非常准确地捕获

层次结构 模式考虑图像

识别或面部识别

这些算法例如

在卷积神经网络中实现

使用神经网络中的深层

来检测跨

长度尺度和时间尺度的

特征这些特征用于确定

图像或照片

是汽车树还是猫 或者在我们的例子中,

我们使用这些卷积神经

网络来确定

材料具有什么功能,通过

从蛋白质长度尺度观察其微观结构来确定材料具有什么功能,蛋白质长度

尺度基本上是 dna 的代码

化学成分 微观尺度

中尺度 所有 材料深度学习的宏观

尺度形状和形式的方法

g 是一种强大的方法来

捕获结构化过程函数

关系,否则

很难理解除

卷积神经网络之外的许多其他机器学习方法,

例如

基于博弈论的基于深度学习的方法或

gans 生成对抗神经

网络 它基本上实现了一种

博弈论方法,其中多个

神经网络

相互玩游戏

以找到物理问题的

解决方案这些解决方案不仅

可以解决诸如平衡力之类的物理问题

,还

可以解决设计问题 在

给定一组约束的情况下,算法将确定最优设计的问题

非常令人兴奋,因为它

增强了人类的创造力

,事实上我们可以

通过创建

增强现实或虚拟现实

环境来补充或补充人类的创造力,在这些环境中,我们可以

与人工智能系统

进行交互 感觉,我们可以 让事情

看起来我们还不能通过

进入增强现实环境看到材料中的类似力

我们可以看到力例如我们可以

看到磁场

我们可以看到我们自己的感觉

我们自己的眼睛还无法识别

但ei算法可以 让它

对我们的感官可见,

然后我们可以在设计过程中使用它,

换句话说,我们可以看到

如何改变过程的直接影响

纳米结构

中尺度结构材料的形状

影响某些

属性我们通常不能 看看哪些

对于工程应用非常重要,

例如材料中的力

对于防止材料

破裂

现在我们可以看到它们使用人工智能和

算法算法开发

就像虚拟

现实一样,我们可以将前沿推向

一个新的水平 我们了解

层次结构如何导致

缺陷万圣节行为

,例如我们可以用原材料制作

材料 那些

在强度和弹性方面都比较优秀的东西,

换句话说,它们很难

打破 想想玻璃 玻璃很容易破碎,

但是

我们不想用玻璃建造,

因为我们不想建造

房屋结构 汽车 火车

爆炸后的飞机 它非常脆弱

使用大自然的设计范式 我们可以

通过

从纳米到宏观和人工智能方法创建这些建筑特征,将矿物或玻璃颗粒等易碎元素转化为整体非常坚韧的结构

可以教我们

如何组装这些模式 这些

构建块

这与

人们已经

使用

人工智能方法解决的问题非常相似

复杂的博弈论方法 现在

我们正在使用人工智能机器学习来解决

类似的问题,

但不是解决如何下围棋,

而是解决难题

解决

如何从废物中设计出最好的

材料的问题,

这是一个令人兴奋的未来,它使

我们能够模仿自然

并训练问题 开发一个

模仿自然的问题解决方案,

以便我们为

自己的问题提供解决方案,以应对我们自己的

挑战 ‘今天面临的

诸如制造大量坚韧的

弹性材料

绿色材料碳汇或

制造用于电池或

过滤装置或

机器人的电极或

具有可

与环境相互作用的智能驱动特性

的材料这些都是

材料设计的挑战性问题 现在需要

一种革命性的方法,例如人工智能和

机器

学习来制造这些材料,我们可以使用

3d 打印我们之前谈到 3d

打印是一种

将材料逐个原子逐个

微观地组装到宏观水平的强大方法事实上

我们 ‘正在使用这些多尺度

增材制造技术,

然后组装这些衍生的废物流

将墨水

注入材料中,然后可以

在各种工业环境中创建和应用

我们可以制造具有定制

特性的材料我们可以拨入我们可以

准确地决定

材料应该具有什么样的强度

当它应该打破什么样的可调特性时它应该具有什么样的弹性

应该有

或如何与

人体在细胞或动物或其他类型

的环境系统中相互作用

,所有这些材料都可以

用自然制成,它们可以由

自然界中实际发现的聚合物或化学物质制成,所以请

回想一下 丝绸之类的材料

存在于自然界中 蛋白质存在于自然界

中 基于丝绸

或基于蛋白质或基于氨基酸的

材料是令人兴奋的解决方案

遗传算法 让我们

通过将它与人工智能和机器

学习相结合来提供进化过程的模拟,它为复杂的物理问题提供

非常快速非常快速的计算

解决方案,以通过将这些人工智能方法与遗传算法相结合来

了解

设计变化如何影响

适应度或性能

的变化

基本上可以

模拟进化,

并在计算机模拟中的几个小时或几天内

设计

最佳蛋白质这些都是

今天可以制造的解决方案

,我们在麻省理工学院的实验室里非常努力地工作,

为后代思考创造未来的可能性

与自然而不是对抗自然的工作,

并提供

一个利用废物作为创造材料未来的方式的平台

,可以

基于我们创造的材料进行的实验测试

可以直接反馈到人工智能模型中

,因此 创建一种强化

学习方法,

实验室中测量性能 y 可以

改进模型本身,从而

改善整体设计体验

现在人类输入

人类创造性输入工程师的输入

通过这些增强现实虚拟

现实设置进入,

我们可以

以不同的方式与计算模型进行交互,

我们可以看到事物 我们还看不到

内力、

电磁力或其他东西,我们

可以

通过这些人工智能方法非常

有效

地增强图片,

通过这些我们希望通过这些方法在虚拟现实设置的增强现实中可以看到的图像

模仿

自然 如果

我们想应对气候挑战,

如果您想

应对我们后代在可持续性方面面临的挑战,我们正在尝试与自然合作而不是与自然

对抗 在这个

世界上,

我们必须关注自然,现在我们有了 nanot 的

绝佳机会

技术

成为科学和工程领域最令人兴奋的

趋势之一

,平台技术与

人工智能和机器学习等计算建模相结合,

我们可以将这些东西放在一起,

为后代

创造模仿自然的解决方案,他们以

自然为基础,与自然合作

工程的未来在于

思考

如何设计天然材料

如何创造它们 如何相互作用

材料的未来还包括有

生命的材料 非

静态的材料 今天的工程师创造的

材料是在工厂制造出来的

工程师设计,然后运送给

消费者或应用

在产品中,它们有生命周期

,它们失败了,现在必须修复

,这是一个非常

不同的范式,与大自然使用的范式不同,

想想我们自己的身体,我们的

它们会长出骨头,如果你伤害了你的骨头,就会

伤害你的皮肤,

我们的身体会尝试修复这些,在

许多情况下 情况下,我们的身体在

修复损伤或疾病方面非常有效

,我们正试图达到

未来材料未来

技术

就像这样工作的地步,我们实际上可以

模仿范式,而不是一次创造

材料

,然后修复它们,我们正在

尝试 为了模仿这种范例,我们

不是制造材料

并将它们运送给消费者

直到它们失效,我们

建立了一种修复功能,我们建立

了一种材料的

生存能力,使其更像我们,材料

更像人类 像昆虫一样,更像

我们周围的生物世界

,能够感知破坏以

响应环境,

以这种方式为工程解决方案创造全新的解决方案

,当然,人类需要人类

对文明的需求是其中的核心

并且 我们可以使用可持续的

解决方案,即碳汇

,使用废料,使用

极其复杂的所有化学物质的丰富性

微生物废物

我们今天

在材料构造中的所有化学尾料

实现这一目标的关键

是三一纳米技术 利用

逐个原子构造材料的能力

分子分子

第二计算 使用计算作为

理解构建什么的一种方式 设计和三个

能够

使用增强或虚拟

现实或高级实验成像

测量来测量和感知环境,其中可以

大量生成数据,

这反过来可以改进我们

使用人工智能方法建模的

方式,

例如使用 一种

用于改进

模型的强化学习方法最终这正在

改变工程师的

工作方式对物理世界建模的方式在

今天

几乎可以追溯到牛顿定律,在那里我们

求解方程,例如

写在一块纸上

的微分方程 论文未来

可能依赖于替代方法或

补充 方法

除了求解牛顿定律

薛定谔方程等方程外,

我们还可以

直接从观察中生成数据和行为并理解物理系统的行为,而不是

让牛顿观察苹果是如何

从树上掉下来的,然后推导出一个

计算机可以做类似的事情

计算机可以

观察物理系统或生命系统的

行为方式 相互作用 行为

方式 它们的工作方式,然后从中得出

基于

深度学习或神经网络的

架构

对气候变化的最大威胁之一

是资源的使用

和 这就是这项研究的真正意义

在于,

当大自然使用相同的化学成分时,大自然使用的方法是非常不同的,因此自然

不会

像水泥

或石油或其他类型的

成分那样使用石灰石,而是

使用相同的化学构件

氨基酸来创造几乎任何 功能

这些基于蛋白质的材料具有

功能 多种多样 就像

胶水 传感器 机器人材料 具有

激活特性的机器人材料 可以感知

环境 我可以充当信号

材料 就像神经细胞的电缆 例如

它充当非常坚固的材料

丝绸是已知比钢铁更坚固的材料之一,

这些材料

令人兴奋,它们功能强大

,但它们是由相同的化学构件制成的,

因此为了

应对气候挑战,

我们认为我们需要去 这种操作模式,

我们希望能够在一个

位置

上,我们实际上可以

从几乎

任何特征中创建几乎任何功能