How synthetic biology can improve our health food and materials Emily Leproust

Transcriber:

You probably don’t think about it,

but every day nature
is trying to kill you.

We as humans place constant pressure
on our natural world.

And in response, nature fights back
to balance the scales.

Nature has been adapting and reacting to
the presence of human developments,

just like we’ve been adapting
and reacting to nature.

And nature is telling us
we are on an unsustainable path.

It is time to course correct.

This does not mean abandoning technology,

but it means harnessing
the power of biology itself

to reconcile the creature comforts
of human civilization

with the natural world.

Some of you may be thinking,
“but I recycle” or “I don’t eat meat”

or “I take the bus”
or “I grow my own food.”

And in fact, you may be doing
your part to live sustainably.

And if you do, good for you.

In my view, though,
it’s impossible to exclusively rely

on an individual effort
to make the changes we need.

We have to make the changes
at the global scale

to truly make a difference,

and that requires rethinking

what modern global
sustainability looks like

and a new kind of environmentalism.

To be clear, when I talk
about sustainability,

it’s not just about the environment.

While it’s an important piece,

sustainability is about much more.

Modern sustainability
is the integration of the environment,

people and the economy.

Each of them is needed to thrive.

You cannot have one without the other.

Therefore, the practice
of sustainability recognizes

that everything is connected
and requires a different approach.

So do we both individually
and collectively

change what we’re doing today?

I believe that technology and innovation,

specifically biological innovation,

is the key to answering that question.

Biological innovation will enable
harmonious coexistence with nature

for humans today
and in future generations,

while still enjoying
all of the creature comforts

we’ve come to expect.

If we do it at the global scale,
we will get back in balance with nature,

which will be great for humanity

and will also improve
the health of the planet.

So how do we do that?

The answer is synthetic biology.

Now, some of you may be thinking,
“Synthetic biology?

That sounds like an oxymoron at best
and dangerous at worst.”

How can something biological,
which is based on nature,

also be synthetic,
which implies not natural at all?

Well, synthetic biology
is the engineering of nature

to benefit society.

The core component of synthetic biology
is my favorite molecule, DNA.

DNA is the code of life on Earth.

It contains all the instructions
for animals, plants, humans, microbes,

bacteria, fungi and so much more.

By embracing the power of DNA,

we will be able to achieve
both comfort and sustainability.

Over the last millennia,

our ancestors have pursued this
in basic ways, for instance,

by improving milk production from cows

and making a wild grass called teosinte

into edible corn.

But it took thousands of years.

Over the last 70 years,
what our ancestors did in the field,

without even knowing
they were doing genetic engineering,

we started doing in laboratories.

And as a consequence,
we now have the scientific knowledge

and technological know-how

to harness the power of DNA
for the better.

A true biological revolution.

So how can DNA and synthetic biology help?

Well, we can affect change
in three critical areas:

health, food and materials.

In health, an early health
and economic success

is recombinant injectable insulin
to alleviate diabetes,

a disease that affects
463 million people worldwide.

Today, we can make insulin

from either yeast or bacteria,

instead of extracting it
from the pancreas of pigs and cows.

This allows for the massive
production of insulin

at a fraction of the cost
and without killing pigs and cows.

This means that there are no longer
any factory farms needed

to put insulin on your pharmacy shelf.

Today, using the power of genetics,

we can reduce or even eliminate
mosquito-borne diseases,

such as malaria, Zika,
and even treat dengue with gene drives.

We are doing this by harnessing
mosquitoes' own genetics to wipe them out.

It’s becoming a reality
to correct defective genes

in patients with inherited diseases,

such as severe combined immunodeficiency,

you may know it
as the bubble boy syndrome,

and sickle cell anemia.

We can diagnose disease faster
and more cost-effectively

by writing and reading DNA.

And already we can add pieces of DNA
in the cell of the immune system

to identify and kill
cancer cells in patients.

Thanks to advances like this,

in the future, even terminal cancer
will become chronic diseases.

One major change that is enabling
these incredible advances

is the ability to read

and more importantly
to write DNA at scale.

Over the last 20 years,

the price of writing one base pair of DNA

has dropped from 10 dollars to nine cents,

more than a hundredfold decrease,

drastically reducing cost and unleashing
the imagination of scientists worldwide.

This ability to write DNA at scale
also impacts food and material.

So speaking of food, DNA-based
synthetic biology techniques today

can engineer bacteria
to deliver nitrogen at the root of plants,

eliminating the need for fertilizers,

which you may or may not know
are produced from either coal

or natural gas that is extracted
from the ground.

That is a triple win:

more food, lower food cost

and no need to extract fossil fuel
from the ground to grow food.

While this may seem futuristic,

companies are working on it now,
with field-testing already underway.

We can control crop-destroying pests
using environmentally-friendly methods,

essentially using the bugs' own scent

to prevent them
from mating and laying eggs,

while also protecting
birds, bees and other animals.

These methods are expensive today,
but costs will come down.

We can protect bananas and papayas today,

two crops that are threatened
by deadly pathogens.

By engineering them
to be resistant to this pathogen,

we can ensure that commercial
scale production continues.

It is true for bananas and papaya,

but it’s also true for many other plants

that are coming under
similar attack from nature.

Third. Let’s talk about material.

Everything we touch today comes from oil

or natural gas extracted from the ground,

and that is just unsustainable.

And we can do better using fermentation.

We all know about fermentation.

You feed sugar to yeast
and it gets bigger.

Or, in France, where I come from,
we call it champagne.

Today, by using the same cells,
like yeast, algae and bacteria,

you can engineer them to ferment sugar
or other biomass to produce chemicals.

These tiny cells are the equivalent

of exceptionally efficient
manufacturing facilities.

And it’s amazing.

You can make the same chemicals
that are made from oil

and you couldn’t tell the difference.

That includes directly producing
plastic, flavor, fragrances,

sweetener and so much more.

For instance,

the production process to make blue dye

used in the fabrication of blue jeans,

is a massive polluter of the environment.

Through fermentation, you can make
the same dye much cheaper

and without the environmental impact.

That is guilt-free jeans.

Another method we use to produce chemicals
to enable our comfortable life

is to extract them from nature.

And that is also unsustainable.

For instance, squalene
is a key ingredient of moisturizer.

And I get it.

We all want bright,
beautiful hydrated skin.

But did you know that shark livers
is a major source of squalene?

Sharks are apex predators

and a critical component
of our ocean ecology.

So using sharks to make face cream
just doesn’t make sense.

Instead, we can now make squalene
by fermentation of cane sugar,

and it’s even available on Amazon.

I’m not just talking
about replacing current materials

with more sustainable ones.

We are talking
about making better chemicals

that you could never make from oil

and that will change
your life in the future.

For instance, spider silk
is an amazing material.

It’s way stronger than steel
and super light.

The problem is that you cannot
make spider silk from oil

and you cannot farm spiders.

You put a million spiders in a room.

You come back a week later,
you get one spider, they eat each other.

By using synthetic biology,

we will be able to produce spider silk
at commercial scale

and avoid spider-on-spider violence.

In the future planes
and maybe even flying cars

will be made by synthetic spider silk
instead of carbon composite material.

They’ll be stronger, lighter
and use less fuel.

So this all sounds fantastic,
but it gets better.

It also makes economic sense.

Yes, synthetic biology
will give us health,

sustainable food and sustainable material,

but it’s also a lot cheaper.

And let’s be honest, a lot of people
do not care about the environment,

but everybody loves a deal.

So we humans

get health, food and materials
at a lower cost

and nature gets sustainability for free.

And an additional bonus
is all the millions of jobs

that will be created through
this modern vision of sustainability.

These are not menial jobs.

These new jobs will be
dignified and meaningful,

and they’ll be spread globally

to ensure that humans
live more virtuously in nature.

So synthetic biology is the key
to making civilization sustainable

and will also prevent nature
from killing you too.

In conclusion, we don’t have to choose
between either human benefits or nature.

We can move towards balance
and have both in harmony.

It’s not that we could do it,
it is that we should do it.

We have a moral imperative to do so.

Thank you.

抄写员:

你可能没有想到,

但大自然每天
都在试图杀死你。

作为人类
,我们不断对自然世界施加压力。

作为回应,大自然会反击
以平衡天平。

自然一直在适应
人类发展的存在并对其做出反应,

就像我们一直在
适应自然并对其做出反应一样。

大自然告诉我们,
我们正走在一条不可持续的道路上。

是时候纠正了。

这并不意味着放弃技术,

而是意味着
利用生物本身的力量,

将人类文明的物质享受

与自然世界调和起来。

你们中的一些人可能会想,
“但我回收”或“我不吃肉”

或“我坐公共汽车”
或“我自己种食物”。

事实上,您可能正在尽
自己的一份力量来实现可持续的生活。

如果你这样做,对你有好处。

不过,在我看来,
完全

依靠个人的努力
来做出我们需要的改变是不可能的。

我们必须
在全球范围内做出改变

才能真正发挥作用

,这需要重新

思考现代全球
可持续发展的样子

和一种新的环保主义。

需要明确的是,当我
谈到可持续性时,

它不仅仅是关于环境。

虽然这是一个重要的部分,但

可持续性的意义远不止于此。

现代可持续性
是环境、

人员和经济的整合。

他们每个人都需要茁壮成长。

你不能没有另一个。

因此,
可持续性实践认识

到一切都是相互联系的
,需要不同的方法。

那么,我们个人
和集体

是否都在改变我们今天所做的事情?

我相信技术和创新,

特别是生物创新,

是回答这个问题的关键。

生物创新将使当今和未来的人类能够
与自然和谐共处

同时仍能享受

我们所期待的所有生物舒适。

如果我们在全球范围内这样做,
我们将恢复与自然的平衡,

这将有利于人类

,也将改善
地球的健康。

那么我们该怎么做呢?

答案是合成生物学。

现在,你们中的一些人可能会想,
“合成生物学?

这听起来充其量是矛盾的
,最坏的情况是危险的。”

基于自然

的生物怎么可能是合成的,
这意味着根本不是自然的?

嗯,合成生物学

造福社会的自然工程。

合成生物学的核心成分
是我最喜欢的分子 DNA。

DNA是地球上生命的密码。

它包含
有关动物、植物、人类、微生物、

细菌、真菌等的所有说明。

通过拥抱 DNA 的力量,

我们将能够
实现舒适性和可持续性。

在过去的几千年里,

我们的祖先
以基本的方式追求这一点,例如,

通过提高奶牛的产奶量

并将一种叫做类蜀黍的野草

制成可食用的玉米。

但它花了数千年的时间。

在过去的 70 年里,
我们的祖先在这个领域所做的,

甚至不知道
他们在做基因工程,

我们就开始在实验室里做。

因此,
我们现在拥有科学知识

和技术知识,可以更好

地利用 DNA 的力量

一场真正的生物革命。

那么 DNA 和合成生物学如何提供帮助呢?

好吧,我们可以
影响三个关键领域的变化:

健康、食品和材料。

在健康方面,早期的健康
和经济成功

是重组可注射胰岛素
来缓解糖尿病

,糖尿病是一种影响
全球 4.63 亿人的疾病。

今天,我们可以

从酵母或细菌中制造胰岛素,

而不是
从猪和牛的胰腺中提取。

这允许

以一小部分成本大量生产胰岛素,
并且不会杀死猪和牛。

这意味着不再
需要任何工厂化农场

将胰岛素放在您的药房货架上。

今天,利用遗传学的力量,

我们可以减少甚至消除
蚊媒疾病,

例如疟疾、寨卡病毒,
甚至可以通过基因驱动治疗登革热。

我们通过利用
蚊子自身的基因来消灭它们来做到这一点。

纠正

遗传性疾病患者的缺陷基因正在成为现实,

例如严重的联合免疫缺陷,

你可能知道它
是泡沫男孩综合症

和镰状细胞性贫血。 通过写入和读取 DNA,

我们可以更快
、更经济地诊断疾病

我们已经可以
在免疫系统细胞中添加 DNA 片段

来识别和杀死
患者体内的癌细胞。

由于这样的进步,

在未来,即使是晚期癌症
也会变成慢性病。

促成
这些令人难以置信的进步的一项重大变化

是能够读取

,更重要的是
能够大规模写入 DNA。

在过去的 20 年里,

编写一个碱基对 DNA

的价格从 10 美元下降到 9 美分,

降幅超过一百倍,

大大降低了成本,激发
了全世界科学家的想象力。

这种大规模写入 DNA 的能力
也会影响食物和材料。

所以说到食物,今天基于 DNA 的
合成生物学技术

可以设计细菌
在植物的根部输送氮,

从而消除对肥料的需求

,你可能知道也可能不知道
是从煤

或从植物中提取的天然气生产
的。 地面。

这是三赢:

更多的食物,更低的食物成本,

并且无需从地里提取化石燃料
来种植食物。

虽然这看起来很有未来感,

但公司现在正在努力
,现场测试已经在进行中。

我们可以使用环保方法控制破坏农作物的害虫

主要是利用虫子自身的气味

来阻止
它们交配和产卵,

同时保护
鸟类、蜜蜂和其他动物。

这些方法今天很昂贵,
但成本会下降。

今天,我们可以保护香蕉和木瓜,这

两种作物
受到致命病原体的威胁。

通过将它们设计
为对这种病原体具有抗性,

我们可以确保
继续进行商业规模生产。

香蕉和木瓜确实如此,

但许多其他

受到大自然类似攻击的植物也是如此。

第三。 让我们谈谈材料。

我们今天接触的一切都来自从地下开采的石油

或天然气

,这是不可持续的。

我们可以使用发酵做得更好。

我们都知道发酵。

你把糖喂给酵母
,它会变大。

或者,在我来自的法国,
我们称之为香槟。

今天,通过使用
酵母、藻类和细菌等相同的细胞,

您可以改造它们来发酵糖
或其他生物质来生产化学品。

这些微小的细胞

相当于异常高效的
制造设施。

这太神奇了。

您可以
制造与石油制成的相同化学品,但

您无法区分。

这包括直接生产
塑料、香精、香料、

甜味剂等等。

例如,

用于制造蓝色牛仔裤的蓝色染料的生产过程

是对环境的巨大污染。

通过发酵,您可以
使相同的染料更便宜

且不会对环境造成影响。

那是无罪牛仔裤。

我们用来生产化学品
以实现舒适生活的另一种方法

是从大自然中提取它们。

这也是不可持续的。

例如,角鲨烯
是保湿剂的关键成分。

我明白了。

我们都想要明亮、
美丽的水润肌肤。

但是您知道鲨鱼肝脏
是角鲨烯的主要来源吗?

鲨鱼是顶级捕食者


也是我们海洋生态的重要组成部分。

所以用鲨鱼来做面霜
是没有意义的。

相反,我们现在可以通过蔗糖发酵来制造角鲨烯

,它甚至可以在亚马逊上买到。

我不只是在谈论

用更可持续的材料代替现有材料。

我们正在
谈论制造更好的化学品

,这是您永远无法用石油制造的

,这将改变
您未来的生活。

例如,蜘蛛丝
是一种神奇的材料。

它比钢更坚固,
而且超轻。

问题是你
不能用油制造蜘蛛丝

,也不能养殖蜘蛛。

你在一个房间里放了一百万只蜘蛛。

一周后你回来,
你得到了一只蜘蛛,它们互相吃掉。

通过使用合成生物学,

我们将能够以商业规模生产蜘蛛丝

并避免蜘蛛对蜘蛛的暴力。

在未来,飞机
甚至飞行汽车

都将由合成蜘蛛丝
代替碳复合材料制成。

它们会更坚固、更轻
并且使用更少的燃料。

所以这一切听起来很棒,
但它会变得更好。

这也具有经济意义。

是的,合成生物学
会给我们带来健康、

可持续的食物和可持续的材料,

但它也便宜得多。

老实说,很多人
不关心环境,

但每个人都喜欢交易。

因此,我们人类以较低的成本

获得健康、食物和材料

而大自然则免费获得可持续性。

额外的好处

通过
这种现代的可持续发展愿景将创造数百万个工作岗位。

这些不是卑微的工作。

这些新的工作将是
有尊严的和有意义的

,它们将在全球范围内传播,

以确保人类
在大自然中生活得更加善良。

因此,合成生物学是
使文明可持续发展的关键,

也将防止
大自然杀死你。

总之,我们不必
在人类利益或自然之间做出选择。

我们可以走向平衡
,让两者和谐相处。

不是我们能做到,
而是我们应该做到。

我们有这样做的道德义务。

谢谢你。