An unexpected tool for understanding inequality abstract math Eugenia Cheng

The world is awash
with divisive arguments,

conflict,

fake news,

victimhood,

exploitation, prejudice,
bigotry, blame, shouting

and minuscule attention spans.

It can sometimes seem
that we are doomed to take sides,

be stuck in echo chambers

and never agree again.

It can sometimes seem
like a race to the bottom,

where everyone is calling out
somebody else’s privilege

and vying to show that they
are the most hard-done-by person

in the conversation.

How can we make sense

in a world that doesn’t?

I have a tool for understanding
this confusing world of ours,

a tool that you might not expect:

abstract mathematics.

I am a pure mathematician.

Traditionally, pure maths
is like the theory of maths,

where applied maths is applied
to real problems like building bridges

and flying planes

and controlling traffic flow.

But I’m going to talk about a way
that pure maths applies directly

to our daily lives

as a way of thinking.

I don’t solve quadratic equations
to help me with my daily life,

but I do use mathematical thinking
to help me understand arguments

and to empathize with other people.

And so pure maths helps me
with the entire human world.

But before I talk about
the entire human world,

I need to talk about something
that you might think of

as irrelevant schools maths:

factors of numbers.

We’re going to start
by thinking about the factors of 30.

Now, if this makes you shudder
with bad memories of school maths lessons,

I sympathize, because I found
school maths lessons boring, too.

But I’m pretty sure we are going
to take this in a direction

that is very different
from what happened at school.

So what are the factors of 30?

Well, they’re the numbers that go into 30.

Maybe you can remember them.
We’ll work them out.

It’s one, two, three,

five, six,

10, 15 and 30.

It’s not very interesting.

It’s a bunch of numbers
in a straight line.

We can make it more interesting

by thinking about which of these numbers
are also factors of each other

and drawing a picture,
a bit like a family tree,

to show those relationships.

So 30 is going to be at the top
like a kind of great-grandparent.

Six, 10 and 15 go into 30.

Five goes into 10 and 15.

Two goes into six and 10.

Three goes into six and 15.

And one goes into two, three and five.

So now we see that 10
is not divisible by three,

but that this is the corners of a cube,

which is, I think, a bit more interesting

than a bunch of numbers
in a straight line.

We can see something more here.
There’s a hierarchy going on.

At the bottom level is the number one,

then there’s the numbers
two, three and five,

and nothing goes into those
except one and themselves.

You might remember
this means they’re prime.

At the next level up,
we have six, 10 and 15,

and each of those is a product
of two prime factors.

So six is two times three,

10 is two times five,

15 is three times five.

And then at the top, we have 30,

which is a product
of three prime numbers –

two times three times five.

So I could redraw this diagram
using those numbers instead.

We see that we’ve got
two, three and five at the top,

we have pairs of numbers
at the next level,

and we have single elements
at the next level

and then the empty set at the bottom.

And each of those arrows shows
losing one of your numbers in the set.

Now maybe it can be clear

that it doesn’t really matter
what those numbers are.

In fact, it doesn’t matter what they are.

So we could replace them with
something like A, B and C instead,

and we get the same picture.

So now this has become very abstract.

The numbers have turned into letters.

But there is a point to this abstraction,

which is that it now suddenly
becomes very widely applicable,

because A, B and C could be anything.

For example, they could be
three types of privilege:

rich, white and male.

So then at the next level,
we have rich white people.

Here we have rich male people.

Here we have white male people.

Then we have rich, white and male.

And finally, people with none
of those types of privilege.

And I’m going to put back in
the rest of the adjectives for emphasis.

So here we have rich, white
non-male people,

to remind us that there are
nonbinary people we need to include.

Here we have rich, nonwhite male people.

Here we have non-rich, white male people,

rich, nonwhite, non-male,

non-rich, white, non-male

and non-rich, nonwhite, male.

And at the bottom,
with the least privilege,

non-rich, nonwhite, non-male people.

We have gone from a diagram
of factors of 30

to a diagram of interaction
of different types of privilege.

And there are many things
we can learn from this diagram, I think.

The first is that each arrow represents
a direct loss of one type of privilege.

Sometimes people mistakenly think
that white privilege means

all white people are better off
than all nonwhite people.

Some people point at superrich
black sports stars and say,

“See? They’re really rich.
White privilege doesn’t exist.”

But that’s not what the theory
of white privilege says.

It says that if that superrich sports star
had all the same characteristics

but they were also white,

we would expect them
to be better off in society.

There is something else
we can understand from this diagram

if we look along a row.

If we look along the second-to-top row,
where people have two types of privilege,

we might be able to see
that they’re not all particularly equal.

For example, rich white women
are probably much better off in society

than poor white men,

and rich black men are probably
somewhere in between.

So it’s really more skewed like this,

and the same on the bottom level.

But we can actually take it further

and look at the interactions
between those two middle levels.

Because rich, nonwhite non-men
might well be better off in society

than poor white men.

Think about some extreme
examples, like Michelle Obama,

Oprah Winfrey.

They’re definitely better off
than poor, white, unemployed homeless men.

So actually, the diagram
is more skewed like this.

And that tension exists

between the layers
of privilege in the diagram

and the absolute privilege
that people experience in society.

And this has helped me to understand
why some poor white men

are so angry in society at the moment.

Because they are considered to be high up
in this cuboid of privilege,

but in terms of absolute privilege,
they don’t actually feel the effect of it.

And I believe that understanding
the root of that anger

is much more productive
than just being angry at them in return.

Seeing these abstract structures
can also help us switch contexts

and see that different people
are at the top in different contexts.

In our original diagram,

rich white men were at the top,

but if we restricted
our attention to non-men,

we would see that they are here,

and now the rich, white
non-men are at the top.

So we could move to
a whole context of women,

and our three types of privilege
could now be rich, white and cisgendered.

Remember that “cisgendered” means
that your gender identity does match

the gender you were assigned at birth.

So now we see that rich, white cis women
occupy the analogous situation

that rich white men did
in broader society.

And this has helped me understand
why there is so much anger

towards rich white women,

especially in some parts
of the feminist movement at the moment,

because perhaps they’re prone
to seeing themselves as underprivileged

relative to white men,

and they forget how overprivileged
they are relative to nonwhite women.

We can all use these abstract structures
to help us pivot between situations

in which we are more privileged
and less privileged.

We are all more privileged than somebody

and less privileged than somebody else.

For example, I know and I feel
that as an Asian person,

I am less privileged than white people

because of white privilege.

But I also understand

that I am probably among
the most privileged of nonwhite people,

and this helps me pivot
between those two contexts.

And in terms of wealth,

I don’t think I’m super rich.

I’m not as rich as the kind of people
who don’t have to work.

But I am doing fine,

and that’s a much better
situation to be in

than people who are really struggling,

maybe are unemployed
or working at minimum wage.

I perform these pivots in my head

to help me understand experiences
from other people’s points of view,

which brings me to this
possibly surprising conclusion:

that abstract mathematics
is highly relevant to our daily lives

and can even help us to understand
and empathize with other people.

My wish is that everybody would try
to understand other people more

and work with them together,

rather than competing with them

and trying to show that they’re wrong.

And I believe that abstract
mathematical thinking

can help us achieve that.

Thank you.

(Applause)

世界上充斥
着分裂的争论、

冲突、

假新闻、

受害、

剥削、偏见、
偏执、责备、大喊大叫

和微不足道的注意力。

有时
我们似乎注定要偏袒一方

,被困在回音室中

,再也不会同意。

有时这看起来
像是一场逐底竞赛,

每个人都在呼唤
别人的特权,

并争相表明他们
是谈话中最难对付的

人。

在一个没有意义的世界里,我们如何才能有意义?

我有一个工具可以理解
我们这个令人困惑的世界,

一个你可能想不到的工具:

抽象数学。

我是一个纯粹的数学家。

传统上,纯
数学就像数学理论,

将应用数学
应用于实际问题,如建造桥梁

、飞行飞机

和控制交通流量。

但我要谈谈
纯数学作为一种思维方式直接

应用于我们日常生活

的一种方式。

我不解决二次方程
来帮助我的日常生活,

但我确实使用数学思维
来帮助我理解论点

并同情他人。

因此,纯数学可以帮助我
了解整个人类世界。

但在我
谈论整个人类世界之前,

我需要先谈谈
你可能认为

与学校数学无关的东西:

数的因数。

我们将从
考虑 30 的因数开始。

现在,如果这让你
对学校数学课的糟糕记忆感到不寒而栗,

我很同情,因为我也觉得
学校数学课很无聊。

但我很确定我们将朝着

学校发生的情况截然不同的方向发展。

那么30的因数是什么?

嗯,它们是进入 30 的数字。

也许你可以记住它们。
我们会解决的。

一、二、三、

五、六

、10、15、30。

不是很有趣。


是一堆直线上的数字。

我们可以

通过思考这些数字中的
哪些也是彼此的因素

并画
一张有点像家谱的图片

来显示这些关系,从而使其更有趣。

因此,30 岁将
像曾祖父母一样处于顶峰。

6、10 和 15 进入 30。5

进入 10 和

15。2 进入 6 和

10。3 进入 6 和

15。1 进入 2、3 和 5。

所以现在我们看到
10 不能被 3 整除

,但这是一个立方体的角

,我认为这比

直线上的一堆数字更有趣。

我们可以在这里看到更多的东西。
有一个层次结构。

最底层是数字一,

然后是数字
二、三和五,

除了一和他们自己之外,没有其他任何东西。

您可能还记得
这意味着它们是主要的。

在下一个级别,
我们有 6 个、10 个和 15 个

,每个都是
两个质因数的乘积。

所以六是二乘三,

10是二乘五,

15是三乘五。

然后在顶部,我们有 30,


是三个素数的乘积——

两倍三倍五。

所以我可以
用这些数字来重绘这个图表。

我们看到
顶部有 2、3 和 5,下一层

有成对的数字
,下

一层有单个元素

,底部有空集。

这些箭头中的每一个都显示
丢失了您在该组中的一个数字。

现在也许可以清楚的

是,
这些数字是多少并不重要。

事实上,它们是什么并不重要。

所以我们可以
用 A、B 和 C 代替它们

,我们得到相同的图片。

所以现在这已经变得非常抽象了。

数字变成了字母。

但是这种抽象有一点,

那就是它现在突然
变得非常广泛适用,

因为 A、B 和 C 可以是任何东西。

例如,他们可以是
三种特权:

富人、白人和男性。

所以在下一个层次,
我们有富有的白人。

我们这里有富有的男性。

我们这里有白人男性。

然后我们有富人、白人和男性。

最后,
没有这些特权的人。

我将把
其余的形容词放回去强调。

所以这里我们有富有的白人
非男性

,提醒
我们需要包括非二元性的人。

我们这里有富有的非白人男性。

在这里,我们有非富人,白人男性,

富人,非白人,非男性,

非富人,白人,非男性

和非富人,非白人,男性。

而在最底层
,特权最低的

是非富人、非白人、非男性。

我们已经从
30 的因数

图变成
了不同类型特权的交互图。

我认为,我们可以从这张图表中学到很多东西。

首先是每个箭头代表
一种特权的直接丧失。

有时人们错误地
认为白人特权意味着

所有白人
都比所有非白人都好。

有人指着超级富有的
黑人体育明星说:

“看到了吗?他们真的很有钱。
白人特权不存在。”

但这不是
白人特权理论所说的。

它说,如果那个超级富豪体育明星
具有所有相同的特征,

但他们也是白人,

我们希望他们
在社会上过得更好。 如果我们沿着一行看,

我们可以从这张图中理解其他一些东西

如果我们查看倒数第二行,
人们有两种特权,

我们可能会
发现他们并不是特别平等。

例如,富有的白人女性
在社会上的处境可能

比贫穷的白人男性要好得多,

而富有的黑人男性可能
介于两者之间。

所以它真的像这样更偏斜

,在底层也是如此。

但我们实际上可以更进一步

,看看
这两个中间层次之间的相互作用。

因为富有的非白人非男性
在社会上可能

比贫穷的白人男性过得更好。

想想一些极端的
例子,比如米歇尔奥巴马、

奥普拉温弗瑞。

他们绝对
比贫穷、白人、失业的无家可归者过得更好。

所以实际上,这个
图更像这样倾斜。

图表中的特权层级与

人们在社会中体验到的绝对特权之间存在着张力。

这帮助我理解了
为什么现在一些贫穷的白人

在社会上如此愤怒。

因为他们
在这个特权长方体中被认为是高高在上,

但在绝对特权方面,
他们实际上并没有感受到它的影响。

而且我相信,
理解愤怒的根源

比仅仅对他们生气更有成效。

看到这些抽象结构
也可以帮助我们切换上下文

,看到不同的人
在不同的上下文中处于顶部。

在我们最初的图表中,

富有的白人男性处于顶部,

但如果我们将
注意力限制在非男性身上,

我们会看到他们在这里,

而现在富有的
非男性白人处于顶部。

所以我们可以转向
女性的整体背景

,我们的三种
特权现在可以是富有的、白人的和顺性别的。

请记住,“顺性别”
意味着您的性别认同确实与

您在出生时分配的性别相匹配。

所以现在我们看到富有的白人顺式女性
占据了与

富有的白人男性
在更广泛的社会中所做的类似情况。

这帮助我理解了
为什么

对富有的白人女性有如此多的愤怒,

尤其是
在目前女权运动的某些部分,

因为也许她们
倾向于认为自己

相对于白人男性来说是弱势群体

,他们忘记了自己是多么的优越
他们是相对于非白人女性而言的。

我们都可以使用这些抽象结构
来帮助

我们在特权较高
和特权较低的情况之间进行转换。

我们都比某人享有更多特权

,但比其他人享有更少特权。

例如,我知道并且我
觉得作为一个亚洲人,由于白人的特权,

我比白人享有更少

的特权。

但我也明白

,我可能
是最有特权的非白人之一

,这有助于我
在这两种情况之间进行调整。

就财富而言,

我不认为我超级富有。

我不像那些不需要工作的人那么有钱

但我做得很好

,这

比那些真正苦苦挣扎的人要好得多,

也许是失业
或以最低工资工作。

我在脑海中执行这些支点,

以帮助我
从其他人的角度理解经验,

这使我得出了一个
可能令人惊讶的结论

:抽象
数学与我们的日常生活高度相关,

甚至可以帮助我们理解
和同情他人 .

我的愿望是每个人都尝试
更多地了解其他人

并与他们一起工作,

而不是与他们竞争

并试图证明他们是错误的。

我相信抽象的
数学思维

可以帮助我们实现这一目标。

谢谢你。

(掌声)