How fast is the speed of thought Seena Mathew

Your mortal enemy has captured you
and hooked you up to a bizarre experiment.

He’s extended your nervous system
with one very long neuron

to a target about 70 meters away.

At some point,
he’s going to fire an arrow.

If you can then think a thought
to the target before the arrow hits it,

he’ll let you go.

So who wins that race?

In order to answer, we have to examine
the hardware of thought: neurons.

The human brain has about 86 billion
of these cells.

They transmit signals down their axons
by way of electrical impulses,

or action potentials.

One neuron can then pass that signal
to the next at a synapse

by way of chemical neurotransmitters.

The signal is received
by the next neuron’s dendrites,

propagated down its axon,
and passed further along.

So, the key factors that determine
how quickly you think

include how long it takes to generate
an initial action potential;

propagate it down the length of the axon;
and transport it through the synapse.

We must also factor in the number
of neurons involved

and the distance the signal has to travel.

Let’s see what this looks like in a simple
pathway— your knee-jerk reflex.

A strike to your patellar tendon
triggers an electrical impulse

that travels up a sensory neuron
to your spine.

There the signal branches,
and for the sake of simplicity,

we’ll consider the segment that jumps
into a motor neuron

to journey back down your leg.

The total length of the neurons
in that pathway

is about 1 meter in someone
who is 5 foot 5 inches,

and on average it takes
15 to 30 milliseconds from strike to kick.

Speed is distance divided by time,

so this signal travels somewhere
between 120 to 240 kilometers per hour.

The initial action potential accounts
for 1 to 5 milliseconds

and synaptic transmissions only take
.1 to .5 milliseconds,

so the bulk of that time
is spent within the axons.

This is consistent with research findings

that the average individual neuron sends
signals at around 180 kilometers per hour.

But speeds can be boosted with myelination
and increased axon diameter.

Myelin is a fatty sheath
that insulates an axon,

preventing electrical currents
from leaking out.

Meanwhile, axons with larger diameters
offer less internal resistance.

These compounded factors can raise
the speed of an action potential

as high as 432 kilometers per hour.

There’s plenty of variation:
some people think faster than others,

and your own speed of thought changes
throughout your lifetime.

In particular, as you reach old age,

the myelin sheath covering your axons
wears down,

and other neuronal structures degrade.

Back to the dastardly experiment.

Arrows shot from recurve bows fly,
on average,

around 240 kilometers per hour.

Which means that given a sufficiently
long, myelinated or large-diameter neuron,

your thoughts actually could win the race.

But… there’s a wrinkle.

The arrow and thought don’t leave
the gate at the same time;

first the arrow fires,
then once you perceive it,

your signal can start down its path.

Processing images or music,
participating in inner speech,

and recalling memories all require
complicated neural pathways

that are nowhere close to the linearity
of the knee-jerk reflex.

The speed at which these thoughts
occur is mostly consistent,

with variations based on myelination
and axon diameter.

But the duration of a thought will vary
significantly depending on its routes,

pitstops, and destination.

In this case, when you perceive
a threatening stimulus,

you’ll invoke a fear startle response.

Similar to the knee-jerk response,

a startle can be involuntary
and quite fast.

If the string twangs loud enough,

you might react
in less than 65 milliseconds.

More likely though, your startle reaction
will be based on sight.

Our eyes can process an image
as quickly as 13 milliseconds,

but computation of what you’re seeing
and determining the danger it poses

can take as long
as 180 to 200 milliseconds.

In that time the arrow will have gained
a head start of about 13 meters.

The target is far enough away

that you’ve got just enough
of a chance to catch up,

if you can quickly, and quite literally,
think your way out.

你的死敌俘虏了你,
并把你引向了一个奇怪的实验。


用一个很长的神经元将你的神经系统延伸

到大约 70 米外的目标。

在某个时候,
他会发射一支箭。

如果你能
在箭击中目标之前对目标进行思考,

他就会放你走。

那么谁能赢得那场比赛呢?

为了回答,我们必须检查
思想的硬件:神经元。

人脑中有大约 860 亿
个这样的细胞。

它们
通过电脉冲

或动作电位沿轴突传递信号。

然后一个神经元可以通过化学神经递质将该信号传递
给突触处的下一个

神经元。

信号
被下一个神经元的树突接收,

沿其轴突传播,
并进一步传递。

因此,决定您思考速度的关键因素

包括产生
初始动作电位需要多长时间;

沿着轴突的长度传播它;
并通过突触运输它。

我们还必须考虑所
涉及的神经元数量

和信号必须传播的距离。

让我们看看这在一个简单的路径中是什么样子的——
你的下意识反射。

对您的髌腱的撞击
会触发一个电脉冲,该电脉冲

沿感觉神经元向上传播
到您的脊柱。

那里是信号分支
,为了简单起见,

我们将考虑
跳入运动神经元

并沿着你的腿返回的部分。

对于身高 5 英尺 5 英寸的人来说
,该通路中神经元的总

长度约为 1 米,

从击球到踢球平均需要 15 到 30 毫秒。

速度是距离除以时间,

所以这个信号以
每小时 120 到 240 公里的速度传播。

初始动作电位
占 1 到 5 毫秒,

而突触传递只需要
0.1 到 0.5 毫秒,

因此大部分时间
都花在轴突内。

这与研究结果一致,

即平均单个神经元
以每小时 180 公里左右的速度发送信号。

但是可以通过髓鞘形成
和增加轴突直径来提高速度。

髓磷脂是一种脂肪鞘
,可隔离轴突,

防止
电流泄漏。

同时,直径较大的轴突
提供的内阻较小。

这些复合因素可以将
动作电位的速度提高到

每小时 432 公里。

有很多变化:
有些人比其他人思考得更快,

而你自己的思考速度会
在你的一生中发生变化。

特别是随着年龄的增长,

覆盖轴突的髓鞘会
磨损

,其他神经元结构也会退化。

回到卑鄙的实验。

从反曲弓射出的箭
平均飞行速度

约为每小时 240 公里。

这意味着,给定一个足够
长、有髓或大直径的神经元,

你的想法实际上可以赢得比赛。

但是……有皱纹。

箭与念不
同时出门;

首先箭头发射,
然后一旦你察觉到它,

你的信号就可以沿着它的路径开始。

处理图像或音乐、
参与内心对话

以及回忆记忆都需要
复杂的神经通路

,而这些通路远不
及膝跳反射的线性度。

这些想法
发生的速度大多是一致的,

并根据髓鞘形成
和轴突直径而变化。

但是一个想法的持续时间会
根据它的路线、

进站和目的地而有很大的不同。

在这种情况下,当您感知
到威胁性刺激时,

您会引发恐惧惊吓反应。

类似于下意识的反应

,惊吓可能是不由自主的,
而且非常快。

如果弦的声音足够响亮,

您可能会
在不到 65 毫秒的时间内做出反应。

但更有可能的是,您的惊吓反应
将基于视力。

我们的眼睛可以
最快 13 毫秒处理图像,

但计算您所看到的内容
并确定其构成的危险

可能
需要 180 到 200 毫秒。

在那个时候,箭头将
获得大约 13 米的领先优势。

目标足够远

,你有
足够的机会赶上,

如果你能快速地,从字面上看,
想出你的出路。