Is math discovered or invented Jeff Dekofsky

Would mathematics exist if people didn’t?

Since ancient times,
mankind has hotly debated

whether mathematics
was discovered or invented.

Did we create mathematical concepts to
help us understand the universe around us,

or is math the native language of
the universe itself,

existing whether we find
its truths or not?

Are numbers, polygons
and equations truly real,

or merely ethereal representations
of some theoretical ideal?

The independent reality of math has
some ancient advocates.

The Pythagoreans of 5th Century Greece
believed numbers were both

living entities and universal principles.

They called the number one, “the monad,”
the generator of all other numbers

and source of all creation.

Numbers were active agents in nature.

Plato argued mathematical
concepts were concrete

and as real as the universe itself,
regardless of our knowledge of them.

Euclid, the father of geometry, believed
nature itself

was the physical manifestation
of mathematical laws.

Others argue that while numbers may
or may not exist physically,

mathematical statements definitely don’t.

Their truth values are based on rules
that humans created.

Mathematics is thus an invented
logic exercise,

with no existence outside mankind’s
conscious thought,

a language of abstract relationships
based on patterns discerned by brains,

built to use those patterns to invent
useful but artificial order from chaos.

One proponent of this sort of idea
was Leopold Kronecker,

a professor of mathematics in
19th century Germany.

His belief is summed up in
his famous statement:

“God created the natural numbers,
all else is the work of man.”

During mathematician
David Hilbert’s lifetime,

there was a push to establish mathematics
as a logical construct.

Hilbert attempted to axiomatize all
of mathematics,

as Euclid had done with geometry.

He and others who attempted this saw
mathematics as a deeply philosophical game

but a game nonetheless.

Henri Poincaré, one of the father’s of
non-Euclidean geometry,

believed that the existence of
non-Euclidean geometry,

dealing with the non-flat surfaces of
hyperbolic and elliptical curvatures,

proved that Euclidean geometry, the
long standing geometry of flat surfaces,

was not a universal truth,

but rather one outcome of using one
particular set of game rules.

But in 1960, Nobel Physics laureate
Eugene Wigner

coined the phrase, “the unreasonable
effectiveness of mathematics,”

pushing strongly for the idea that
mathematics is real

and discovered by people.

Wigner pointed out that many purely
mathematical theories

developed in a vacuum, often with no view
towards describing any physical phenomena,

have proven decades
or even centuries later,

to be the framework necessary to explain

how the universe
has been working all along.

For instance, the number theory of British
mathematician Gottfried Hardy,

who had boasted that none of his work
would ever be found useful

in describing any phenomena
in the real world,

helped establish cryptography.

Another piece of his purely
theoretical work

became known as the Hardy-Weinberg
law in genetics,

and won a Nobel prize.

And Fibonacci stumbled
upon his famous sequence

while looking at the growth of an
idealized rabbit population.

Mankind later found the sequence
everywhere in nature,

from sunflower seeds
and flower petal arrangements,

to the structure of a pineapple,

even the branching of bronchi
in the lungs.

Or there’s the non-Euclidean work of
Bernhard Riemann in the 1850s,

which Einstein used in the model for
general relativity a century later.

Here’s an even bigger jump:

mathematical knot theory, first developed
around 1771

to describe the geometry of position,

was used in the late 20th century
to explain how DNA unravels itself

during the replication process.

It may even provide key explanations
for string theory.

Some of the most influential
mathematicians and scientists

of all of human history
have chimed in on the issue as well,

often in surprising ways.

So, is mathematics an
invention or a discovery?

Artificial construct or
universal truth?

Human product or
natural, possibly divine, creation?

These questions are so deep the debate
often becomes spiritual in nature.

The answer might depend on the specific
concept being looked at,

but it can all feel like a
distorted zen koan.

If there’s a number of trees in a forest,
but no one’s there to count them,

does that number exist?

如果人们不存在数学会存在吗?

自古以来,
人类一直在激烈

争论数学
是被发现还是发明。

我们是否创造了数学概念来
帮助我们理解我们周围的宇宙,

或者数学
是宇宙本身

的母语,无论我们是否找到
它的真理都存在?

数字、多边形
和方程真的是真实的,

还是仅仅
是某种理论理想的空灵表示?

数学的独立现实有
一些古老的拥护者。

5 世纪希腊的毕达哥拉斯学派
相信数字既是

生物,也是普遍的原则。

他们称第一为“单子”
,是所有其他数字的生成器

和所有创造的源泉。

数字本质上是活性剂。

柏拉图认为数学
概念是具体的

,与宇宙本身一样真实,
无论我们对它们的了解如何。

几何之父欧几里得相信
自然本身

就是
数学定律的物理表现。

其他人则认为,虽然数字在
物理上可能存在也可能不存在,但

数学陈述绝对不存在。

他们的真值基于
人类创造的规则。

因此,数学是一种发明的
逻辑练习

,不存在于人类
有意识的思想之外,

是一种
基于大脑识别模式的抽象关系语言,

旨在利用这些模式
从混乱中发明有用但人为的秩序。

这种想法的支持者之一

19 世纪德国的数学教授 Leopold Kronecker。

他的名言总结了他的信念

“上帝创造了自然数,
其他一切都是人的工作。”

在数学家
大卫希尔伯特的一生中,

有人推动将数学建立
为一种逻辑结构。

希尔伯特试图公理化所有
的数学,

就像欧几里德对几何所做的那样。

他和其他尝试这样做的人将
数学视为一场深刻的哲学游戏,

但仍然是一场游戏。 非欧几何

之父之一亨利庞加莱

认为

处理
双曲和椭圆曲率的非平面的非欧几何的存在,

证明了欧几里得几何这个
由来已久的平面几何

是 不是普遍真理,

而是使用一
组特定游戏规则的结果。

但在 1960 年,诺贝尔物理学奖获得者
尤金·维格纳(Eugene Wigner)

创造了“数学的不合理有效性”这一短语,

强烈主张
数学是真实的

并且是由人们发现的。

维格纳指出,许多纯
数学理论

是在真空中发展起来的,通常不考虑
描述任何物理现象,但

在几十年
甚至几个世纪后已经证明,

它们是

解释宇宙一直如何运作的必要框架

例如,英国
数学家戈特弗里德·哈代(Gottfried Hardy)的数论

曾吹嘘说他的任何工作
都无法

用于描述
现实世界中的任何现象,这

有助于建立密码学。

他的另一项纯
理论工作

被称为遗传学中的哈代-温伯格
定律,

并获得了诺贝尔奖。

斐波那契在观察理想化兔子种群的增长时偶然发现
了他的著名序列

人类后来
在自然界中到处都发现了这个序列,

从向日葵种子
和花瓣排列,

到菠萝的结构,

甚至是肺部的支气管分支

或者有
伯恩哈德·黎曼在 1850 年代的非欧几里得工作

,爱因斯坦在一个世纪后的广义相对论模型中使用了它

这是一个更大的飞跃:

数学结理论,最初是
在 1771 年左右发展

起来描述位置的几何形状,

在 20 世纪后期被
用来解释 DNA

在复制过程中如何解开自身。

它甚至可以为弦理论提供关键的解释
。 人类历史上

一些最有影响力的
数学家和科学家

也对这个问题发表了意见,而且

往往以令人惊讶的方式。

那么,数学是
发明还是发现?

人工构造还是
普遍真理?

人类产品还是
自然的,可能是神圣的创造?

这些问题是如此之深,以至于辩论
往往在本质上变成了属灵的。

答案可能取决于所研究的具体
概念,

但感觉就像一个
扭曲的禅宗公案。

如果森林里有很多树,
但没有人数一数,

那么这个数字存在吗?