The paradox at the heart of mathematics Gdels Incompleteness Theorem Marcus du Sautoy

Consider the following sentence:
“This statement is false.”

Is that true?

If so, that would make
this statement false.

But if it’s false, then the statement
is true.

By referring to itself directly, this
statement creates an unresolvable paradox.

So if it’s not true and it’s not false—
what is it?

This question might seem
like a silly thought experiment.

But in the early 20th century,
it led Austrian logician Kurt Gödel

to a discovery that would change
mathematics forever.

Gödel’s discovery had to do with
the limitations of mathematical proofs.

A proof is a logical argument
that demonstrates

why a statement about numbers is true.

The building blocks of these arguments
are called axioms—

undeniable statements
about the numbers involved.

Every system built on mathematics,

from the most complex proof
to basic arithmetic,

is constructed from axioms.

And if a statement about numbers is true,

mathematicians should be able to confirm
it with an axiomatic proof.

Since ancient Greece,
mathematicians used this system

to prove or disprove mathematical claims
with total certainty.

But when Gödel entered the field,

some newly uncovered logical paradoxes
were threatening that certainty.

Prominent mathematicians were eager
to prove

that mathematics had no contradictions.

Gödel himself wasn’t so sure.

And he was even less confident
that mathematics was the right tool

to investigate this problem.

While it’s relatively easy to create
a self-referential paradox with words,

numbers don’t typically
talk about themselves.

A mathematical statement is simply
true or false.

But Gödel had an idea.

First, he translated mathematical
statements and equations into code numbers

so that a complex mathematical idea could
be expressed in a single number.

This meant that mathematical statements
written with those numbers

were also expressing something about
the encoded statements of mathematics.

In this way, the coding allowed
mathematics to talk about itself.

Through this method, he was able to write:

“This statement cannot be proved”
as an equation,

creating the first self-referential
mathematical statement.

However, unlike the ambiguous
sentence that inspired him,

mathematical statements must be
true or false.

So which is it?

If it’s false, that means the statement
does have a proof.

But if a mathematical statement has
a proof, then it must be true.

This contradiction means that Gödel’s
statement can’t be false,

and therefore it must be true that
“this statement cannot be proved.”

Yet this result is even more surprising,

because it means we now have
a true equation of mathematics

that asserts it cannot be proved.

This revelation is at the heart
of Gödel’s Incompleteness Theorem,

which introduces an entirely new class
of mathematical statement.

In Gödel’s paradigm, statements still
are either true or false,

but true statements can either be
provable or unprovable

within a given set of axioms.

Furthermore, Gödel argues these
unprovable true statements

exist in every axiomatic system.

This makes it impossible to create

a perfectly complete system
using mathematics,

because there will always be true
statements we cannot prove.

Even if you account for these
unprovable statements

by adding them as new axioms
to an enlarged mathematical system,

that very process introduces new
unprovably true statements.

No matter how many axioms you add,

there will always be unprovably true
statements in your system.

It’s Gödels all the way down!

This revelation rocked the foundations
of the field,

crushing those who dreamed that every
mathematical claim would one day

be proven or disproven.

While most mathematicians accepted this
new reality, some fervently debated it.

Others still tried to ignore
the newly uncovered a hole

in the heart of their field.

But as more classical problems were proven
to be unprovably true,

some began to worry their life’s work
would be impossible to complete.

Still, Gödel’s theorem opened
as many doors as a closed.

Knowledge of unprovably true statements

inspired key innovations
in early computers.

And today, some mathematicians dedicate
their careers

to identifying provably
unprovable statements.

So while mathematicians may have
lost some certainty,

thanks to Gödel they can embrace
the unknown

at the heart of any quest for truth.

考虑下面的句子:
“这个陈述是错误的。”

真的吗?

如果是这样,那将使
该陈述成为错误的。

但如果它是假的,那么这个陈述
就是真的。

通过直接引用自身,这个
陈述创造了一个无法解决的悖论。

所以,如果它不是真的也不是假的——
那是什么?

这个问题可能看起来
像是一个愚蠢的思想实验。

但在 20 世纪初,
它让奥地利逻辑学家库尔特·哥德尔(Kurt Gödel)

做出了一项将永远改变数学的发现

哥德尔的发现与
数学证明的局限性有关。

证明是一个逻辑论证
,它证明了

为什么关于数字的陈述是正确的。

这些论点的组成部分
被称为公理——

关于所涉及数字的不可否认的陈述。

每个建立在数学基础上的系统,

从最复杂的证明
到基本算术,

都是由公理构成的。

如果关于数字的陈述是正确的,

数学家应该能够
用公理证明来证实它。

自古希腊以来,
数学家就使用这个系统

来完全确定地证明或反驳数学
主张。

但是当哥德尔进入这个领域时,

一些新发现的逻辑悖论
正在威胁着这种确定性。

著名的数学家渴望

证明数学没有矛盾。

哥德尔本人并不太确定。

他甚至更不
相信数学是

研究这个问题的正确工具。

虽然
用文字创造一个自我参照的悖论相对容易,但

数字通常不会
谈论自己。

数学陈述只是
对或错。

但哥德尔有个主意。

首先,他将数学
陈述和方程式翻译成代码数字,

以便一个复杂的数学思想
可以用一个数字来表达。

这意味着
用这些数字编写的数学陈述

也表达了一些
关于数学编码陈述的内容。

通过这种方式,编码让
数学可以谈论自己。

通过这种方法,他能够将

“这个陈述不能被证明”
写成一个方程,

创造了第一个自引用的
数学陈述。

然而,与启发他的模棱两可的
句子不同,

数学陈述必须是
真或假。

那么它是哪一个?

如果它是假的,那意味着该陈述
确实有证据。

但如果一个数学陈述
有证明,那么它一定是真的。

这个矛盾意味着哥德尔的
陈述不可能是假的

,因此
“这个陈述不能被证明”一定是真的。

然而,这个结果更令人惊讶,

因为这意味着我们现在有
一个真正的数学方程,

它断言它无法被证明。

这一发现
是哥德尔不完备定理的核心,

它引入了一类全新
的数学陈述。

在哥德尔的范式中,陈述仍然
是真或假,

但在一组给定的公理中,真陈述可以是可
证明的或不可证明

的。

此外,哥德尔认为这些
无法证明的真实陈述

存在于每个公理系统中。

这使得使用数学创建

一个完美完整的系统变得不可能

因为总会有
我们无法证明的真实陈述。

即使您通过将这些
无法证明的陈述

作为新公理添加
到扩大的数学系统来解释这些陈述,

这个过程也会引入新的
无法证明的真实陈述。

无论您添加多少公理,您的系统

中总会有无法证明的真实
陈述。

一路下来都是哥德尔斯!

这一发现动摇
了该领域的基础,

粉碎了那些梦想每一个
数学主张有一天都会

被证明或被证伪的人。

尽管大多数数学家接受了这一
新现实,但也有一些人对此进行了热烈的辩论。

其他人仍然试图
忽略他们领域中心新发现的一个漏洞

但随着更多经典问题被
证明是不可证明的真实性,

一些人开始担心他们一生的工作
可能无法完成。

尽管如此,哥德尔定理打开的
门与关闭的门一样多。

对无法证明的真实陈述的了解激发

了早期计算机的关键创新。

而今天,一些数学家将
他们的职业生涯奉献

给了识别可证明
不可证明的陈述。

因此,尽管数学家可能已经
失去了一些确定性,但

多亏了哥德尔,他们可以

在任何寻求真理的核心中拥抱未知。