The unexpected math behind Van Goghs Starry Night Natalya St. Clair

One of the most remarkable aspects
of the human brain

is its ability to recognize patterns
and describe them.

Among the hardest patterns
we’ve tried to understand

is the concept of
turbulent flow in fluid dynamics.

The German physicist
Werner Heisenberg said,

“When I meet God,
I’m going to ask him two questions:

why relativity and why turbulence?

I really believe he will have
an answer for the first.”

As difficult as turbulence is
to understand mathematically,

we can use art to depict the way it looks.

In June 1889, Vincent van Gogh
painted the view just before sunrise

from the window of his room
at the Saint-Paul-de-Mausole asylum

in Saint-Rémy-de-Provence,

where he’d admitted himself after
mutilating his own ear

in a psychotic episode.

In “The Starry Night,”
his circular brushstrokes

create a night sky filled
with swirling clouds and eddies of stars.

Van Gogh and other Impressionists
represented light in a different way

than their predecessors,

seeming to capture
its motion, for instance,

across sun-dappled waters,

or here in star light
that twinkles and melts

through milky waves of blue night sky.

The effect is caused by luminance,

the intensity of the light
in the colors on the canvas.

The more primitive part
of our visual cortex,

which sees light contrast
and motion, but not color,

will blend two differently
colored areas together

if they have the same luminance.

But our brains' primate subdivision

will see the contrasting colors
without blending.

With these two interpretations
happening at once,

the light in many Impressionist works
seems to pulse, flicker and radiate oddly.

That’s how this
and other Impressionist works

use quickly executed
prominent brushstrokes

to capture something strikingly real
about how light moves.

Sixty years later, Russian
mathematician Andrey Kolmogorov

furthered our mathematical
understanding of turbulence

when he proposed that energy
in a turbulent fluid at length R

varies in proportion to
the 5/3rds power of R.

Experimental measurements show Kolmogorov

was remarkably close
to the way turbulent flow works,

although a complete description
of turbulence

remains one of the unsolved
problems in physics.

A turbulent flow is self-similar
if there is an energy cascade.

In other words, big eddies
transfer their energy to smaller eddies,

which do likewise at other scales.

Examples of this include
Jupiter’s Great Red Spot,

cloud formations
and interstellar dust particles.

In 2004, using the Hubble Space Telescope,

scientists saw the eddies of a distant
cloud of dust and gas around a star,

and it reminded them
of Van Gogh’s “Starry Night.”

This motivated scientists
from Mexico, Spain and England

to study the luminance
in Van Gogh’s paintings in detail.

They discovered that there is a distinct
pattern of turbulent fluid structures

close to Kolmogorov’s equation
hidden in many of Van Gogh’s paintings.

The researchers digitized the paintings,

and measured how brightness varies
between any two pixels.

From the curves measured
for pixel separations,

they concluded that paintings from
Van Gogh’s period of psychotic agitation

behave remarkably similar
to fluid turbulence.

His self-portrait with a pipe, from
a calmer period in Van Gogh’s life,

showed no sign of this correspondence.

And neither did other artists' work

that seemed equally
turbulent at first glance,

like Munch’s “The Scream.”

While it’s too easy to say
Van Gogh’s turbulent genius

enabled him to depict turbulence,

it’s also far too difficult to accurately
express the rousing beauty of the fact

that in a period of intense suffering,

Van Gogh was somehow
able to perceive and represent

one of the most supremely
difficult concepts

nature has ever brought before mankind,

and to unite his unique mind’s eye

with the deepest mysteries
of movement, fluid and light.

人类大脑最显着的方面
之一

是它能够识别模式
并描述它们。 我们试图

理解的最难的模式之一

是流体动力学中的湍流概念。

德国物理学家
维尔纳·海森堡说:

“当我遇到上帝时,
我会问他两个问题:

为什么是相对论,为什么是湍流?

我真的相信他会
首先给出一个答案。”

尽管湍流很难从
数学上理解,

但我们可以用艺术来描绘它的样子。

1889 年 6 月,文森特·梵高

在普罗旺斯的圣保罗·德·莫索莱庇护所的房间窗户上画了日出前的景色

他在那里
割伤了自己的耳朵后承认了自己

。 精神病发作。

在“星夜”中,
他的圆形笔触

创造了一个
充满旋转云层和星星漩涡的夜空。

梵高和其他印象派画家
以与他们的前辈不同的方式表现光

似乎捕捉到了
它的运动,例如,

穿过阳光斑驳的水域,

或者在星光
中闪烁并融化

在蓝色夜空的乳白色波浪中。

这种效果是由亮度引起的,

即画布上颜色的光强度。 我们

的视觉皮层更原始的部分

,看到光的对比
和运动,但看不到颜色,

如果它们具有相同的亮度,它们会将两个不同颜色的区域混合在一起。

但是我们大脑的灵长类细分

会看到对比色
而不混合。

随着这两种解释
同时发生,

许多印象派作品中的光
似乎在跳动、闪烁和散发出奇怪的光芒。

这就是这幅
和其他印象派作品如何

使用快速执行的
突出笔触

来捕捉
关于光线如何移动的惊人真实的东西。

60 年后,俄罗斯
数学家 Andrey Kolmogorov

进一步加深了我们
对湍流的数学理解,

他提出
长度为 R 的湍流流体中的能量与 R 的 5/3 次方

成比例变化

实验测量表明,

Kolmogorov 非常
接近湍流的方式 工作,

尽管对湍流的完整描述

仍然是物理学中未解决的
问题之一。

如果存在能量级联,则湍流是自相似的。

换句话说,大涡流
将它们的能量转移到较小的涡流中,

在其他尺度上也是如此。

这方面的例子包括
木星的大红斑、

云层
和星际尘埃粒子。

2004 年,科学家们使用哈勃太空望远镜

看到
了恒星周围遥远的尘埃和气体云的漩涡

,这让他们想起了
梵高的“星夜”。

这促使
来自墨西哥、西班牙和英国的科学家

详细研究梵高画作中的亮度。

他们发现,

在梵高的许多画作中隐藏着一种与 Kolmogorov 方程相近的湍流结构的独特模式。

研究人员将这些画作数字化,

并测量了
任意两个像素之间的亮度如何变化。

从像素分离测量的曲线中

他们得出结论,
梵高精神激动时期的画作

与流体湍流非常相似

他用烟斗的自画像,
来自梵高生活中较为平静的时期,

没有显示出这种对应的迹象。

乍一看似乎同样动荡的其他艺术家的作品也没有

比如蒙克的《呐喊》。

虽然说
梵高的湍流天才

使他能够描绘动荡太容易,

但要准确
表达这一事实的激动人心的美丽也太难了

,即在一段痛苦的时期,

梵高能够以某种方式
感知并代表

其中之一。

大自然给人类带来的最困难的概念,

并将他独特的心灵之眼

与最深奥
的运动、流体和光的奥秘结合起来。