What is a vector David Huynh

Physicists,

air traffic controllers,

and video game creators

all have at least one thing in common:

vectors.

What exactly are they,
and why do they matter?

To answer,
we first need to understand scalars.

A scalar is a quantity with magnitude.

It tells us how much
of something there is.

The distance between you and a bench,

and the volume and temperature
of the beverage in your cup

are all described by scalars.

Vector quantities also have a magnitude
plus an extra piece of information,

direction.

To navigate to your bench,

you need to know how far away it is
and in what direction,

not just the distance,
but the displacement.

What makes vectors special
and useful in all sorts of fields

is that they don’t change
based on perspective

but remain invariant
to the coordinate system.

What does that mean?

Let’s say you and a friend
are moving your tent.

You stand on opposite sides
so you’re facing in opposite directions.

Your friend moves two steps to the right
and three steps forward

while you move two steps to the left
and three steps back.

But even though it seems
like you’re moving differently,

you both end up moving
the same distance in the same direction

following the same vector.

No matter which way you face,

or what coordinate system you place
over the camp ground,

the vector doesn’t change.

Let’s use the familiar
Cartesian coordinate system

with its x and y axes.

We call these two directions
our coordinate basis

because they’re used to describe
everything we graph.

Let’s say the tent starts at the origin
and ends up over here at point B.

The straight arrow connecting
the two points

is the vector from the origin to B.

When your friend thinks about
where he has to move,

it can be written mathematically
as 2x + 3y,

or, like this, which is called an array.

Since you’re facing the other way,

your coordinate basis
points in opposite directions,

which we can call x prime
and y prime,

and your movement
can be written like this,

or with this array.

If we look at the two arrays,
they’re clearly not the same,

but an array alone doesn’t completely
describe a vector.

Each needs a basis to give it context,

and when we properly assign them,

we see that they are in fact
describing the same vector.

You can think of elements in the array
as individual letters.

Just as a sequence of letters
only becomes a word

in the context of a particular language,

an array acquires meaning as a vector
when assigned a coordinate basis.

And just as different words
in two languages can convey the same idea,

different representations from two bases
can describe the same vector.

The vector is the essence
of what’s being communicated,

regardless of the language
used to describe it.

It turns out that scalars also share
this coordinate invariance property.

In fact, all quantities with this property
are members of a group called tensors.

Various types of tensors contain different
amounts of information.

Does that mean there’s something that
can convey more information than vectors?

Absolutely.

Say you’re designing a video game,

and you want to realistically model
how water behaves.

Even if you have forces acting
in the same direction

with the same magnitude,

depending on how they’re oriented,
you might see waves or whirls.

When force, a vector, is combined with
another vector that provides orientation,

we have the physical quantity
called stress,

which is an example
of a second order tensor.

These tensors are also used outside of
video games for all sorts of purposes,

including scientific simulations,

car designs,

and brain imaging.

Scalars, vectors, and the tensor family
present us with a relatively simple way

of making sense of complex ideas
and interactions,

and as such, they’re a prime example of
the elegance, beauty,

and fundamental usefulness of mathematics.

物理学家、

空中交通管制员

和视频游戏创作者

都至少有一个共同点:

向量。

它们到底是什么,
它们为什么重要?

要回答这个问题,
我们首先需要了解标量。

标量是具有大小的量。

它告诉我们
有多少东西。

您与长凳之间的距离,

以及
您杯中饮料的体积和温度

都用标量来描述。

矢量量也有一个量级
加上一条额外的信息,即

方向。

要导航到您的长凳,

您需要知道它有多远
以及朝哪个方向,

不仅是距离,
还有位移。

使向量
在各种领域中特别和有用的

原因在于它们不会
根据透视

而改变,但
对坐标系保持不变。

这意味着什么?

假设您和一个朋友
正在移动您的帐篷。

你站在相反的两侧,
所以你面对相反的方向。

你的朋友向右移动两步
,向前

移动三步,而你向左移动两步
,向后移动三步。

但是,即使
看起来你的移动方式不同,

但最终你们都会
沿着同一个向量在同一个方向上移动相同的距离

无论您面向哪个方向,

或在营地上方放置什么坐标系

,矢量都不会改变。

让我们使用熟悉的
笛卡尔坐标

系及其 x 和 y 轴。

我们将这两个方向称为
我们的坐标基础,

因为它们用于描述
我们绘制的所有内容。

假设帐篷从原点开始,
并在 B 点结束。

连接两点的直箭头

是从原点到 B 的向量。

当你的朋友
考虑他必须移动的地方时,

它可以在数学上
写成 2x + 3y,

或者像这样,称为数组。

由于你面向另一个方向,

你的坐标基点
指向相反的方向

,我们可以称之为 x prime
和 y prime

,你的运动
可以这样写,

或者用这个数组。

如果我们看一下这两个数组,
它们显然是不一样的,

但是一个数组本身并不能完全
描述一个向量。

每个都需要一个基础来给它上下文

,当我们正确地分配它们时,

我们会看到它们实际上是在
描述同一个向量。

您可以将数组中的元素
视为单个字母。

正如字母序列

在特定语言的上下文中成为单词一样,

数组
在分配坐标基础时获得作为向量的含义。

就像
两种语言中的不同单词可以传达相同的想法一样,

来自两个基础的不同表示
可以描述相同的向量。

向量是
所传达内容的本质,


用于描述它的语言无关。

事实证明,标量也具有
这种坐标不变性。

事实上,所有具有此属性的量
都是称为张量的组的成员。

不同类型的张量包含不同
数量的信息。

这是否意味着有些东西
可以传达比向量更多的信息?

绝对地。

假设您正在设计一个视频游戏,

并且您想要真实地
模拟水的行为。

即使你有
相同方向的力作用

相同大小,

取决于它们的方向,
你可能会看到波浪或漩涡。

当力,一个向量,与
另一个提供方向的向量结合时,

我们就有了
称为应力的物理量,

这是
二阶张量的一个例子。

这些张量还用于
视频游戏之外的各种目的,

包括科学模拟、

汽车设计

和大脑成像。

标量、向量和张量族为
我们提供了一种相对简单的方法

来理解复杂的想法
和交互

,因此,它们是数学
优雅、美丽

和基本有用性的典型例子。