An introduction to mathematical theorems Scott Kennedy

What is proof?

And why is it so important in mathematics?

Proofs provide a solid
foundation for mathematicians

logicians, statisticians,
economists, architects, engineers,

and many others to build
and test their theories on.

And they’re just plain awesome!

Let me start at the beginning.

I’ll introduce you
to a fellow named Euclid.

As in, “here’s looking at you, Clid.”

He lived in Greece about 2,300 years ago,

and he’s considered by many to be
the father of geometry.

So if you’ve been wondering where
to send your geometry fan mail,

Euclid of Alexandria is the guy
to thank for proofs.

Euclid is not really known for inventing
or discovering a lot of mathematics

but he revolutionized the way
in which it is written,

presented, and thought about.

Euclid set out to formalize mathematics
by establishing the rules of the game.

These rules of the game are called axioms.

Once you have the rules,

Euclid says you have to use them
to prove what you think is true.

If you can’t, then your theorem or idea

might be false.

And if your theorem is false, then
any theorems that come after it and use it

might be false too.

Like how one misplaced beam can
bring down the whole house.

So that’s all that proofs are:

using well-established rules to prove
beyond a doubt that some theorem is true.

Then you use those theorems like blocks

to build mathematics.

Let’s check out an example.

Say I want to prove
that these two triangles

are the same size and shape.

In other words, they are congruent.

Well, one way to do
that is to write a proof

that shows that all three sides
of one triangle

are congruent to all three sides
of the other triangle.

So how do we prove it?

First, I’ll write down what we know.

We know that point M
is the midpoint of AB.

We also know that sides AC
and BC are already congruent.

Now let’s see. What does
the midpoint tell us?

Luckily, I know
the definition of midpoint.

It is basically the point in the middle.

What this means is that AM
and BM are the same length,

since M is the exact middle of AB.

In other words, the bottom side
of each of our triangles are congruent.

I’ll put that as step two.

Great! So far I have two pairs
of sides that are congruent.

The last one is easy.

The third side of the left triangle

is CM, and the third side
of the right triangle is -

well, also CM.

They share the same side.

Of course it’s congruent to itself!

This is called the reflexive property.

Everything is congruent to itself.

I’ll put this as step three.

Ta dah! You’ve just proven
that all three sides of the left triangle

are congruent to all three sides
of the right triangle.

Plus, the two triangles are congruent

because of the side-side-side
congruence theorem for triangles.

When finished with a proof,
I like to do what Euclid did.

He marked the end of a proof
with the letters QED.

It’s Latin for “quod erat demonstrandum,”

which translates literally to

“what was to be proven.”

But I just think of it
as “look what I just did!”

I can hear what you’re thinking:

why should I study proofs?

One reason is that they could
allow you to win any argument.

Abraham Lincoln, one of our nation’s greatest
leaders of all time

used to keep a copy of Euclid’s Elements
on his bedside table

to keep his mind in shape.

Another reason is you can
make a million dollars.

You heard me.

One million dollars.

That’s the price that the Clay
Mathematics Institute in Massachusetts

is willing to pay anyone who proves
one of the many unproven theories

that it calls “the millenium problems.”

A couple of these have been solved
in the 90s and 2000s.

But beyond money and arguments,

proofs are everywhere.

They underly architecture, art, computer
programming, and internet security.

If no one understood
or could generate a proof,

we could not advance these
essential parts of our world.

Finally, we all know
that the proof is in the pudding.

And pudding is delicious. QED.

什么是证明?

为什么它在数学中如此重要?

证明
为数学家

逻辑学家、统计学家、
经济学家、建筑师、工程师

和许多其他人建立
和检验他们的理论提供了坚实的基础。

他们简直太棒了!

让我从头开始。

我会给你
介绍一个叫欧几里得的人。

比如,“我在看着你,Clid。”

大约 2300 年前,他住在希腊

,许多人认为他
是几何学之父。

因此,如果您一直想
知道将几何爱好者的邮件发送到哪里

,亚历山大的 Euclid 就是
要感谢他提供证明的人。

欧几里得并不是真正以发明
或发现大量数学

而闻名,但他彻底改变
了数学的编写、

呈现和思考方式。

欧几里得开始
通过建立游戏规则来形式化数学。

这些游戏规则称为公理。

一旦你有了规则,

欧几里德说你必须用它们
来证明你认为是真的。

如果你不能,那么你的定理或想法

可能是错误的。

如果你的定理是错误的,那么
任何在它之后并使用它的定理也

可能是错误的。

就像一根错位的横梁可以
摧毁整个房子。

所以这就是证明的全部内容:

使用完善的规则来
毫无疑问地证明某个定理是正确的。

然后,您可以使用这些定理(例如积木)

来构建数学。

让我们看一个例子。

假设我想
证明这两个三角形

的大小和形状相同。

换句话说,它们是一致的。

好吧,一种方法
是写一个证明

,证明
一个三角形

的所有三个边
都与另一个三角形的所有三个边全等。

那么我们如何证明呢?

首先,我会写下我们所知道的。

我们知道 M
点是 AB 的中点。

我们也知道 AC
和 BC 边已经一致了。

现在让我们看看。
中点告诉我们什么?

幸运的是,我知道
中点的定义。

基本上就是中间那个点。

这意味着 AM
和 BM 的长度相同,

因为 M 正好是 AB 的中点。

换句话说,
我们每个三角形的底边是全等的。

我会把它作为第二步。

伟大的! 到目前为止,我有两
对完全一致的边。

最后一个很简单。

左三角形的第三边

是 CM,而右三角形的第三边
是 -

嗯,也是 CM。

他们有共同的一面。

当然和自己是一致的!

这称为自反属性。

一切都与自己一致。

我会把它作为第三步。

达达! 您刚刚
证明了左三角形

的所有三个边
都与右三角形的所有三个边全等。

另外,由于三角形的边边同余定理,这两个三角形是全等的

完成证明后,
我喜欢做 Euclid 所做的事情。

他用字母 QED 标记了证明的结尾

它是拉丁语的“quod erat demostrandum”

字面意思是“要证明的东西”。

但我只是认为它
是“看看我刚刚做了什么!”

我能听到你在想什么:

我为什么要研究证明?

一个原因是他们可以
让你赢得任何争论。

亚伯拉罕·林肯(Abraham Lincoln),我们国家有史以来最伟大的
领导人之一,

过去常常在他的床头柜上放一本欧几里德的元素

以保持头脑清醒。

另一个原因是你可以
赚到一百万美元。

你听到了我的声音。

一百万美元。


是马萨诸塞州克莱数学研究所

愿意为任何证明了它称之为“千年问题”
的许多未经证实的理论之一的人支付的价格

其中一些已
在 90 年代和 2000 年代解决。

但除了金钱和争论之外,

证据无处不在。

它们是建筑、艺术、计算机
编程和互联网安全的基础。

如果没有人理解
或无法提供证明,

我们就无法推进
我们世界的这些重要部分。

最后,我们都
知道证据就在布丁中。

而且布丁很好吃。 QED。