Is our climate headed for a mathematical tipping point Victor J. Donnay

For most of us, two degrees Celsius
is a tiny difference in temperature,

not even enough to make
you crack a window.

But scientists have warned that as
CO2 levels in the atmosphere rise,

an increase in the Earth’s temperature
by even this amount

can lead to catastrophic effects
all over the world.

How can such a small measurable
change in one factor

lead to massive and unpredictable
changes in other factors?

The answer lies in the concept of a
mathematical tipping point,

which we can understand through the
familiar game of billiards.

The basic rule of billiard motion is

that a ball will go straight
until it hits a wall,

then bounce off at an angle equal
to its incoming angle.

For simplicity’s sake, we’ll assume that
there is no friction,

so balls can keep moving indefinitely.

And to simplify the situation further,

let’s look at what happens with only
one ball on a perfectly circular table.

As the ball is struck and begins to move
according to the rules,

it follows a neat star-shaped pattern.

If we start the ball at
different locations,

or strike it at different angles,
some details of the pattern change,

but its overall form remains the same.

With a few test runs, and some basic
mathematical modeling,

we can even predict a ball’s path
before it starts moving,

simply based on its starting conditions.

But what would happen
if we made a minor change

in the table’s shape
by pulling it apart a bit,

and inserting two small straight edges
along the top and bottom?

We can see that as the ball bounces
off the flat sides,

it begins to move all over the table.

The ball is still obeying the same rules
of billiard motion,

but the resulting movement no longer
follows any recognizable pattern.

With only a small change
to the constraints

under which the system operates,

we have shifted the billiard motion

from behaving in a stable
and predictable fashion,

to fluctuating wildly,

thus creating what mathematicians
call chaotic motion.

Inserting the straight edges into
the table acts as a tipping point,

switching the systems behavior
from one type of behavior (regular),

to another type of behavior (chaotic).

So what implications does this simple
example have for the much more complicated

reality of the Earth’s climate?

We can think of the shape of the table as
being analogous to the CO2 level

and Earth’s average temperature:

Constraints that impact the
system’s performance

in the form of the ball’s motion
or the climate’s behavior.

During the past 10,000 years,

the fairly constant CO2 atmospheric
concentration of

270 parts per million kept the climate
within a self-stabilizing pattern,

fairly regular and hospitable
to human life.

But with CO2 levels now at 400
parts per million,

and predicted to rise to between
500 and 800 parts per million

over the coming century,
we may reach a tipping point where

even a small additional change
in the global average temperature

would have the same effect as
changing the shape of the table,

leading to a dangerous shift in the
climate’s behavior,

with more extreme and intense
weather events,

less predictability, and most importantly,
less hospitably to human life.

The hypothetical models that
mathematicians study in detail

may not always look like
actual situations,

but they can provide a framework
and a way of thinking

that can be applied to help understand the
more complex problems of the real world.

In this case, understanding
how slight changes

in the constraints impacting a system
can have massive impacts

gives us a greater appreciation for
predicting the dangers

that we cannot immediately percieve
with our own senses.

Because once the results do become visible,
it may already be too late.

对于我们大多数人来说,两摄氏度
的温度差异是很小的,

甚至不足以让
你打开窗户。

但科学家们警告说,随着
大气中二氧化碳含量

的上升,即使地球温度
升高这么多,

也会在全世界造成灾难性影响
。 一个因素

如此微小的可衡量变化怎么会

导致其他因素发生巨大且不可预测的
变化?

答案在于
数学引爆点的概念

,我们可以通过
熟悉的台球游戏来理解。

台球运动的基本规则是

,球会一直直行,
直到撞到墙壁,

然后以与其传入角度相等的角度反弹

为简单起见,我们假设
没有摩擦,

所以球可以无限期地移动。

为了进一步简化情况,

让我们看看
在一个完美的圆形桌子上只有一个球会发生什么。

当球被击中并开始按照规则移动时

它遵循一个整齐的星形图案。

如果我们从
不同的位置开始

击球,或者从不同的角度击球,
图案的一些细节会发生变化,

但其整体形式保持不变。

通过一些测试运行和一些基本的
数学建模,

我们甚至可以在球
开始移动之前预测它的路径,

只需根据它的起始条件。

但是,
如果我们

通过将桌子拉开一点,

并在顶部和底部插入两条小的直边来对桌子的形状进行微小的改变,会发生什么

我们可以看到,当球从
平坦的侧面反弹时,

它开始在整个桌子上移动。

球仍然遵循相同
的台球运动规则,

但由此产生的运动不再
遵循任何可识别的模式。

只需

对系统运行的约束条件进行微小的更改,

我们就能将台球运动

从稳定
且可预测的方式

转变为剧烈波动,

从而产生数学家
所说的混沌运动。

将直边
插入表格作为一个临界点,

将系统行为
从一种行为(常规)

切换到另一种行为(混乱)。

那么这个简单的
例子对地球气候这个更为复杂的

现实有什么影响呢?

我们可以将表格的形状
视为类似于二氧化碳水平

和地球平均温度:

以球的运动
或气候行为的形式影响系统性能的约束。

在过去的 10,000 年中

,大气中相当稳定的二氧化碳
浓度为

百万分之 270,使气候保持
在一个自我稳定的模式内,

相当规律且
适合人类生活。

但是,现在二氧化碳含量
为百万分之 400

,预计在下个世纪将上升到
百万分之 500 到 800 之间


我们可能会达到一个临界点,

即使全球平均温度的微小额外变化

也会产生相同的影响 例如
改变桌子的形状,

导致气候行为的危险转变

,更极端和激烈的
天气事件

,更少的可预测性,最重要的是,
对人类生活的热情降低。

数学家详细研究的假设模型

可能并不总是看起来像
实际情况,

但它们可以提供一个框架
和一种思维方式

,可以用来帮助理解
现实世界中更复杂的问题。

在这种情况下,了解

影响系统的约束条件的微小变化
如何产生巨大影响

,可以让我们更好地

预测我们无法
用自己的感官立即感知的危险。

因为一旦结果变得可见
,可能已经为时已晚。