The medical potential of AI and metabolites Leila Pirhaji

In 2003,

when we sequenced the human genome,

we thought we would have the answer
to treat many diseases.

But the reality is far from that,

because in addition to our genes,

our environment and lifestyle
could have a significant role

in developing many major diseases.

One example is fatty liver disease,

which is affecting over 20 percent
of the population globally,

and it has no treatment
and leads to liver cancer

or liver failure.

So sequencing DNA alone
doesn’t give us enough information

to find effective therapeutics.

On the bright side, there are
many other molecules in our body.

In fact, there are
over 100,000 metabolites.

Metabolites are any molecule
that is supersmall in their size.

Known examples are glucose,
fructose, fats, cholesterol –

things we hear all the time.

Metabolites are involved
in our metabolism.

They are also downstream of DNA,

so they carry information
from both our genes as well as lifestyle.

Understanding metabolites is essential
to find treatments for many diseases.

I’ve always wanted to treat patients.

Despite that, 15 years ago,
I left medical school,

as I missed mathematics.

Soon after, I found the coolest thing:

I can use mathematics to study medicine.

Since then, I’ve been developing
algorithms to analyze biological data.

So, it sounded easy:

let’s collect data from all
the metabolites in our body,

develop mathematical models to describe
how they are changed in a disease

and intervene in those
changes to treat them.

Then I realized why no one
has done this before:

it’s extremely difficult.

(Laughter)

There are many metabolites in our body.

Each one is different from the other one.

For some metabolites,
we can measure their molecular mass

using mass spectrometry instruments.

But because there could be, like,
10 molecules with the exact same mass,

we don’t know exactly what they are,

and if you want to clearly
identify all of them,

you have to do more experiments,
which could take decades

and billions of dollars.

So we developed an artificial
intelligence, or AI, platform, to do that.

We leveraged the growth of biological data

and built a database of any existing
information about metabolites

and their interactions
with other molecules.

We combined all this data
as a meganetwork.

Then, from tissues or blood of patients,

we measure masses of metabolites

and find the masses
that are changed in a disease.

But, as I mentioned earlier,
we don’t know exactly what they are.

A molecular mass of 180 could be
either the glucose, galactose or fructose.

They all have the exact same mass

but different functions in our body.

Our AI algorithm considered
all these ambiguities.

It then mined that meganetwork

to find how those metabolic masses
are connected to each other

that result in disease.

And because of the way they are connected,

then we are able to infer
what each metabolite mass is,

like that 180 could be glucose here,

and, more importantly, to discover

how changes in glucose
and other metabolites

lead to a disease.

This novel understanding
of disease mechanisms

then enable us to discover
effective therapeutics to target that.

So we formed a start-up company
to bring this technology to the market

and impact people’s lives.

Now my team and I at ReviveMed
are working to discover

therapeutics for major diseases
that metabolites are key drivers for,

like fatty liver disease,

because it is caused
by accumulation of fats,

which are types
of metabolites in the liver.

As I mentioned earlier,
it’s a huge epidemic with no treatment.

And fatty liver disease
is just one example.

Moving forward, we are going to tackle
hundreds of other diseases

with no treatment.

And by collecting more and more
data about metabolites

and understanding
how changes in metabolites

leads to developing diseases,

our algorithms will get
smarter and smarter

to discover the right therapeutics
for the right patients.

And we will get closer to reach our vision

of saving lives with every line of code.

Thank you.

(Applause)

2003 年,

当我们对人类基因组进行测序时,

我们认为我们将
找到治疗许多疾病的答案。

但现实远非如此,

因为除了我们的基因外,

我们的环境和生活方式
可能

在许多重大疾病的发展中发挥重要作用。

一个例子是脂肪肝病,

它影响着全球超过 20%
的人口

,它没有得到治疗,
并导致肝癌

或肝功能衰竭。

因此,仅对 DNA 进行测序
并不能为我们提供足够的信息

来找到有效的治疗方法。

从好的方面来说,
我们体内还有许多其他分子。

事实上,有
超过 100,000 种代谢物。

代谢
物是任何尺寸超小的分子。

已知的例子是葡萄糖、
果糖、脂肪、胆固醇——

我们经常听到的东西。

代谢物
参与我们的新陈代谢。

它们也是 DNA 的下游,

因此它们携带
来自我们基因和生活方式的信息。

了解代谢物
对于找到许多疾病的治疗方法至关重要。

我一直想给病人治病。

尽管如此,15 年前,
我离开了医学院,

因为我错过了数学。

不久之后,我发现了最酷的事情:

我可以用数学来学习医学。

从那时起,我一直在开发
分析生物数据的算法。

所以,这听起来很简单:

让我们从
我们体内的所有代谢物中收集数据,

开发数学模型来描述
它们在疾病中是如何变化的,

并干预这些
变化来治疗它们。

然后我意识到为什么以前没有人
这样做过:

这非常困难。

(笑声)

我们体内有很多代谢物。

每一个都与另一个不同。

对于某些代谢物,
我们可以使用质谱仪测量它们的分子质量

但是因为可能存在
10 个质量完全相同的分子,

我们不知道它们到底是什么

,如果你想清楚地
识别它们,

你必须做更多的实验,
这可能需要数十年

和数十亿 美元。

因此,我们开发了一个
人工智能或 AI 平台来做到这一点。

我们利用生物数据的增长

,建立了
有关代谢物

及其
与其他分子相互作用的任何现有信息的数据库。

我们将所有这些数据组合
成一个巨型网络。

然后,从患者的组织或血液中,

我们测量代谢物

的质量并找到
疾病中发生变化的质量。

但是,正如我之前提到的,
我们并不确切知道它们是什么。

180 的分子量可以
是葡萄糖、半乳糖或果糖。

它们在我们体内都具有完全相同的质量,

但功能不同。

我们的 AI 算法考虑了
所有这些歧义。

然后,它挖掘了这个巨型网络,

以找出这些代谢物质
是如何相互联系并

导致疾病的。

而且由于它们的连接方式

,我们能够推断
出每种代谢物的质量,

比如这里的 180 可能是葡萄糖

,更重要的是,发现

葡萄糖
和其他代谢物的变化如何

导致疾病。

这种
对疾病机制的新认识

使我们能够发现
针对该疾病的有效疗法。

所以我们成立了一家初创公司
,将这项技术推向市场

并影响人们的生活。

现在我和我在 ReviveMed 的团队
正在努力寻找

代谢物是主要驱动因素的主要疾病的治疗方法,

比如脂肪肝疾病,

因为它是
由脂肪积累引起的,脂肪是

肝脏中的一种代谢物。

正如我之前提到的,
这是一场没有治疗的巨大流行病。

脂肪肝
只是一个例子。

展望未来,我们将在

没有治疗的情况下解决数百种其他疾病。

通过收集越来越多
有关代谢物的数据并了解代谢物的

变化如何

导致疾病发展,

我们的算法将变得
越来越聪明,

从而
为正确的患者发现正确的治疗方法。

我们将更接近实现我们

用每一行代码拯救生命的愿景。

谢谢你。

(掌声)