Emergency medicine for our climate fever Kelly Wanser

I’m here to talk to you about something
important that may be new to you.

The governments of the world

are about to conduct
an unintentional experiment

on our climate.

In 2020, new rules will require ships
to lower their sulfur emissions

by scrubbing their dirty exhaust

or switching to cleaner fuels.

For human health, this is really good,

but sulfur particles
in the emission of ships

also have an effect on clouds.

This is a satellite image of marine clouds

off the Pacific West Coast
of the United States.

The streaks in the clouds
are created by the exhaust from ships.

Ships' emissions include
both greenhouse gases,

which trap heat over long periods of time,

and particulates like sulfates
that mix with clouds

and temporarily make them brighter.

Brighter clouds reflect
more sunlight back to space,

cooling the climate.

So in fact,

humans are currently running
two unintentional experiments

on our climate.

In the first one, we’re increasing
the concentration of greenhouse gases

and gradually warming the earth system.

This works something like a fever
in the human body.

If the fever remains low,
its effects are mild,

but as the fever rises,
damage grows more severe

and eventually devastating.

We’re seeing a little of this now.

In our other experiment,

we’re planning to remove
a layer of particles

that brighten clouds and shield us
from some of this warming.

The effect is strongest
in ocean clouds like these,

and scientists expect the reduction
of sulfur emissions from ships next year

to produce a measurable increase
in global warming.

Bit of a shocker?

In fact, most emissions contain sulfates
that brighten clouds:

coal, diesel exhaust, forest fires.

Scientists estimate that the total
cooling effect from emission particles,

which they call aerosols
when they’re in the climate,

may be as much as all of the warming
we’ve experienced up until now.

There’s a lot of uncertainty
around this effect,

and it’s one of the major reasons
why we have difficulty predicting climate,

but this is cooling that we’ll lose
as emissions fall.

So to be clear, humans
are currently cooling the planet

by dispersing particles
into the atmosphere at massive scale.

We just don’t know how much,
and we’re doing it accidentally.

That’s worrying,

but it could mean that we have
a fast-acting way to reduce warming,

emergency medicine
for our climate fever if we needed it,

and it’s a medicine
with origins in nature.

This is a NASA simulation
of earth’s atmosphere,

showing clouds and particles
moving over the planet.

The brightness is the Sun’s light
reflecting from particles in clouds,

and this reflective shield
is one of the primary ways

that nature keeps the planet
cool enough for humans

and all of the life that we know.

In 2015, scientists assessed possibilities
for rapidly cooling climate.

They discounted
things like mirrors in space,

ping-pong balls in the ocean,
plastic sheets on the Arctic,

and they found
that the most viable approaches

involved slightly increasing
this atmospheric reflectivity.

In fact, it’s possible that reflecting
just one or two percent more sunlight

from the atmosphere

could offset two degrees Celsius
or more of warming.

Now, I’m a technology executive,
not a scientist.

About a decade ago,
concerned about climate,

I started to talk with scientists about
potential countermeasures to warming.

These conversations grew
into collaborations

that became the Marine
Cloud Brightening Project,

which I’ll talk about momentarily,

and the nonprofit policy organization
SilverLining, where I am today.

I work with politicians, researchers,

members of the tech industry and others

to talk about some of these ideas.

Early on, I met British
atmospheric scientist John Latham,

who proposed cooling the climate
the way that the ships do,

but with a natural source of particles:

sea-salt mist from seawater

sprayed from ships into areas
of susceptible clouds over the ocean.

The approach became known
by the name I gave it then,

“marine cloud brightening.”

Early modeling studies suggested
that by deploying marine cloud brightening

in just 10 to 20 percent
of susceptible ocean clouds,

it might be possible to offset
as much as two degrees Celsius’s warming.

It might even be possible
to brighten clouds in local regions

to reduce the impacts caused
by warming ocean surface temperatures.

For example, regions
such as the Gulf Atlantic

might be cooled in the months
before a hurricane season

to reduce the force of storms.

Or, it might be possible to cool waters
flowing onto coral reefs

overwhelmed by heat stress,

like Australia’s Great Barrier Reef.

But these ideas are only theoretical,

and brightening marine clouds
is not the only way

to increase the reflection
of the sunlight from the atmosphere.

Another occurs when large volcanoes
release material with enough force

to reach the upper layer
of the atmosphere, the stratosphere.

When Mount Pinatubo erupted in 1991,

it released material
into the stratosphere,

including sulfates that mix
with the atmosphere to reflect sunlight.

This material remained
and circulated around the planet.

It was enough to cool the climate
by over half a degree Celsius

for about two years.

This cooling led to a striking increase
in Arctic ice cover in 1992,

which dropped in subsequent years
as the particles fell back to earth.

But the volcanic phenomenon
led Nobel Prize winner Paul Crutzen

to propose the idea that dispersing
particles into the stratosphere

in a controlled way might be
a way to counter global warming.

Now, this has risks
that we don’t understand,

including things like
heating up the stratosphere

or damage to the ozone layer.

Scientists think that there could be
safe approaches to this,

but is this really where we are?

Is this really worth considering?

This is a simulation

from the US National Center
for Atmospheric Research

global climate model showing,
earth surface temperatures through 2100.

The globe on the left visualizes
our current trajectory,

and on the right, a world where particles
are introduced into the stratosphere

gradually in 2020,

and maintained through 2100.

Intervention keeps surface temperatures
near those of today,

while without it, temperatures rise
well over three degrees.

This could be the difference
between a safe and an unsafe world.

So, if there’s even a chance
that this could be close to reality,

is this something
we should consider seriously?

Today, there are no capabilities,

and scientific knowledge
is extremely limited.

We don’t know whether these types
of interventions are even feasible,

or how to characterize their risks.

Researchers hope to explore
some basic questions

that might help us know
whether or not these might be real options

or whether we should rule them out.

It requires multiple ways
of studying the climate system,

including computer models
to forecast changes,

analytic techniques like machine learning,

and many types of observations.

And though it’s controversial,

it’s also critical that researchers
develop core technologies

and perform small-scale,
real-world experiments.

There are two research programs
proposing experiments like this.

At Harvard, the SCoPEx experiment
would release very small amounts

of sulfates, calcium carbonate and water
into the stratosphere with a balloon,

to study chemistry and physics effects.

How much material?

Less than the amount released
in one minute of flight

from a commercial aircraft.

So this is definitely not dangerous,

and it may not even be scary.

At the University of Washington,

scientists hope to spray
a fine mist of salt water into clouds

in a series of land and ocean tests.

If those are successful,
this would culminate in experiments

to measurably brighten
an area of clouds over the ocean.

The marine cloud brightening effort
is the first to develop any technology

for generating aerosols for atmospheric
sunlight reflection in this way.

It requires producing
very tiny particles –

think about the mist that comes
out of an asthma inhaler –

at massive scale – so think
of looking up at a cloud.

It’s a tricky engineering problem.

So this one nozzle they developed

generates three trillion
particles per second,

80 nanometers in size,

from very corrosive saltwater.

It was developed by a team
of retired engineers in Silicon Valley –

here they are –

working full-time for six years,
without pay, for their grandchildren.

It will take a few million dollars
and another year or two

to develop the full spray system
they need to do these experiments.

In other parts of the world,
research efforts are emerging,

including small modeling programs
at Beijing Normal University in China,

the Indian Institute of Science,

a proposed center for climate repair
at Cambridge University in the UK

and the DECIMALS Fund,

which sponsors researchers
in global South countries

to study the potential impacts
of these sunlight interventions

in their part of the world.

But all of these programs,
including the experimental ones,

lack significant funding.

And understanding
these interventions is a hard problem.

The earth is a vast, complex system

and we need major investments
in climate models, observations

and basic science

to be able to predict climate
much better than we can today

and manage both our accidental
and any intentional interventions.

And it could be urgent.

Recent scientific reports
predict that in the next few decades,

earth’s fever is on a path to devastation:

extreme heat and fires,

major loss of ocean life,

collapse of Arctic ice,

displacement and suffering
for hundreds of millions of people.

The fever could even reach tipping points
where warming takes over

and human efforts are no longer enough

to counter accelerating changes
in natural systems.

To prevent this circumstance,

the UN’s International Panel
on Climate Change predicts

that we need to stop
and even reverse emissions by 2050.

How? We have to quickly and radically
transform major economic sectors,

including energy, construction,
agriculture, transportation and others.

And it is imperative that we do this
as fast as we can.

But our fever is now so high

that climate experts say
we also have to remove

massive quantities of CO2
from the atmosphere,

possibly 10 times
all of the world’s annual emissions,

in ways that aren’t proven yet.

Right now, we have slow-moving solutions
to a fast-moving problem.

Even with the most optimistic assumptions,

our exposure to risk
in the next 10 to 30 years

is unacceptably high, in my opinion.

Could interventions like these
provide fast-acting medicine if we need it

to reduce the earth’s fever
while we address its underlying causes?

There are real concerns about this idea.

Some people are very worried
that even researching these interventions

could provide an excuse to delay efforts
to reduce emissions.

This is also known as a moral hazard.

But, like most medicines,

interventions are more dangerous
the more that you do,

so research actually
tends to draw out the fact

that we absolutely,
positively cannot continue

to fill up the atmosphere
with greenhouse gases,

that these kinds of alternatives are risky

and if we were to use them,

we would need to use
as little as possible.

But even so,

could we ever learn enough
about these interventions

to manage the risk?

Who would make decisions
about when and how to intervene?

What if some people are worse off,

or they just think they are?

These are really hard problems.

But what really worries me
is that as climate impacts worsen,

leaders will be called on to respond
by any means available.

I for one don’t want them to act
without real information

and much better options.

Scientists think it will take
a decade of research

just to assess these interventions,

before we ever were
to develop or use them.

Yet today, the global level of investment
in these interventions

is effectively zero.

So, we need to move quickly

if we want policymakers
to have real information

on this kind of emergency medicine.

There is hope!

The world has solved
these kinds of problems before.

In the 1970s, we identified
an existential threat

to our protective ozone layer.

In the 1980s, scientists,
politicians and industry

came together in a solution to replace
the chemicals causing the problem.

They achieved this with the only
legally binding environmental agreement

signed by all countries in the world,

the Montreal Protocol.

Still in force today,

it has resulted in a recovery
of the ozone layer

and is the most successful
environmental protection effort

in human history.

We have a far greater threat now,

but we do have the ability
to develop and agree on solutions

to protect people

and restore our climate to health.

This could mean that to remain safe,

we reflect sunlight for a few decades,

while we green our industries
and remove CO2.

It definitely means we must work now

to understand our options
for this kind of emergency medicine.

Thank you,

(Applause)

我来这里是为了和你谈谈一些对你
来说可能很新的重要事情。

世界各国政府

即将对我们的气候进行
一次无意的实验

2020 年,新规则将要求船舶

通过清洗脏废气

或改用更清洁的燃料来降低硫排放。

对人体健康来说,这确实是好事,


船舶排放的硫颗粒

对云层也有影响。

这是美国太平洋西海岸海洋云层的卫星图像

云中的条纹
是由船舶的废气产生的。

船舶的排放物
包括温室气体,

它们会长时间吸收热量,

以及硫酸盐等颗粒
物,它们会与云层混合

并暂时使它们更亮。

更亮的云层将
更多的阳光反射回太空,从而

使气候变冷。

所以事实上,

人类目前正在

对我们的气候进行两次无意的实验。

在第一个中,我们正在增加
温室气体的浓度

并逐渐使地球系统变暖。

这就像
人体发烧一样。

如果发烧仍然很低,
它的影响是轻微的,

但随着发烧的升高,
损害会变得更加严重

,最终是毁灭性的。

我们现在看到了一点。

在我们的另一个实验中,

我们计划去除
一层

能够照亮云层并保护我们
免受这种变暖影响的粒子层。

这种影响
在这样的海洋云中最为强烈

,科学家预计
明年船舶硫排放量的减少

将导致全球变暖显着增加

有点震惊?

事实上,大多数排放物都含有
使云层变亮的硫酸盐:

煤、柴油废气、森林火灾。

科学家估计,
排放颗粒(

他们在气候中称为气溶胶)的总冷却效应

可能与
我们迄今为止所经历的所有变暖一样多。 这种影响

存在很多不
确定性,这

是我们难以预测气候的主要原因之一,

但随着排放量的下降,我们将失去这种降温

所以需要明确的是,人类
目前正在

通过将粒子
大规模地分散到大气中来冷却地球。

我们只是不知道有多少,
而且我们是无意中这样做的。

这令人担忧,

但这可能意味着我们有
一种快速有效的方法来减少变暖,

如果我们需要的话,我们有应对气候热的紧急药物,

而且它是一种
源自大自然的药物。

这是 NASA
对地球大气层的模拟,

显示了云层和粒子
在地球上空移动。

亮度是太阳
从云中的粒子反射的光

,这种反射罩

是大自然使地球保持
足够凉爽以供人类

和我们所知的所有生命使用的主要方式之一。

2015 年,科学家评估
了气候迅速降温的可能性。

他们不考虑
太空中的镜子、

海洋中的乒乓球、
北极上的塑料布等事物

,他们
发现最可行的方法

是稍微增加
这种大气反射率。

事实上,从大气中
多反射 1% 或 2% 的阳光

就有可能抵消 2 摄氏度
或更多的变暖。

现在,我是一名技术主管,
而不是科学家。

大约十年前,
出于对气候的关注,

我开始与科学家讨论
应对气候变暖的潜在对策。

这些对话发展
成为合作

,成为海洋
云亮化项目

,我稍后会谈到这个项目,以及我今天所在

的非营利性政策组织
SilverLineing。

我与政治家、研究

人员、科技行业的成员和其他人

一起讨论其中的一些想法。

早些时候,我遇到了英国
大气科学家约翰·莱瑟姆,


提出用船舶的方式冷却气候,

但颗粒的天然来源是:

海水中的海盐雾

从船舶喷射
到海洋上易受影响的云层区域。

这种方法
以我当时给它的名字

“海洋云增亮”而闻名。

早期的建模研究表明
,通过

在 10% 到 20%
的易受影响的海洋云中部署海洋云增亮,

就有可能抵消
多达 2 摄氏度的变暖。

甚至有可能
使局部地区的云变亮,

以减少
海洋表面温度升高造成的影响。

例如,
海湾大西洋等地区

可能会在飓风季节前几个月降温,

以减少风暴的力量。

或者,有可能冷却
流入

被热应激淹没的珊瑚礁的水,

比如澳大利亚的大堡礁。

但这些想法只是理论上的

,增亮海洋
云层并不是

增加
大气对阳光反射的唯一方法。

另一种情况发生在大型火山
以足够的力量释放物质

到达
大气层的上层,即平流层时。

1991 年皮纳图博火山爆发时,


向平流层释放物质,

包括
与大气混合以反射阳光的硫酸盐。

这种材料保留
并在地球周围循环。

这足以将气候
降低半摄氏度以上

大约两年。

这种冷却
导致 1992 年北极冰盖的显着增加,

随后几年
随着颗粒落回地球而下降。

但火山现象
导致诺贝尔奖获得者保罗克鲁岑

提出了这样一种观点,即以可控的方式将
粒子分散到平流层

可能是
对抗全球变暖的一种方法。

现在,这有
我们不了解的风险,

包括
加热平流层

或破坏臭氧层等事情。

科学家们认为可能有
安全的方法来解决这个问题,

但这真的是我们所处的位置吗?

这真的值得考虑吗?

这是

来自美国国家
大气研究中心

全球气候模型的模拟,显示
到 2100 年的地球表面温度。

左边的地球形象化
了我们当前的轨迹

,右边的世界,粒子

在 2020 年逐渐进入平流层 ,

并保持到 2100 年。

干预使地表温度保持
在今天的附近,

而没有它,温度会
上升超过三度。

这可能是
安全世界和不安全世界之间的区别。

那么,如果这有
可能接近现实

,这是
我们应该认真考虑的事情吗?

今天,没有能力

,科学
知识极其有限。

我们不知道这些类型
的干预是否可行,

或者如何描述它们的风险。

研究人员希望探索
一些基本问题

,以帮助我们了解
这些是否可能是真正的选择,

或者我们是否应该排除它们。

它需要
多种研究气候系统的方法,

包括
预测变化的计算机模型、

机器学习等分析技术

以及多种类型的观测。

尽管存在争议,

但研究人员
开发核心技术

并进行小规模的
真实世界实验也很重要。

有两个研究计划
提出了这样的实验。

在哈佛,SCoPEx 实验
将使用气球向平流层释放非常少量

的硫酸盐、碳酸钙和水

以研究化学和物理效应。

多少材料?

少于

商用飞机飞行一分钟释放的量。

所以这绝对不危险,

甚至可能不可怕。

在华盛顿大学,

科学家们希望

在一系列陆地和海洋测试中向云层中喷出细细的盐水雾。

如果这些都是成功的,
这将在实验中达到高潮,

以显着地照亮
海洋上空的一片云层。

海洋云增亮工作
是第一个以这种方式开发

用于产生用于大气
阳光反射的气溶胶的技术。

它需要产生
非常微小的颗粒——

想想
哮喘吸入器产生的雾

——大规模——所以
想想看一朵云。

这是一个棘手的工程问题。

因此,他们开发的这个喷嘴每秒会从腐蚀性很强的盐水中

产生 3 万亿

大小为 80 纳米的粒子

它是由硅谷的一个
退休工程师团队开发的——

他们在这里——

为他们的孙子们全职工作了六年,没有报酬。

开发完成这些实验所需的完整喷雾系统将需要几百万美元
和一两年的时间

在世界其他地方,
研究工作正在兴起,

包括
中国北京师范大学的小型建模项目

、印度科学研究所

、英国剑桥大学拟建的气候修复中心

和 DECIMALS 基金,

该基金资助研究
人员 全球南方

国家研究
这些阳光

干预对其所在地区的潜在影响。

但所有这些项目,
包括实验项目,都

缺乏大量资金。

理解
这些干预措施是一个难题。

地球是一个庞大而复杂的系统

,我们需要
对气候模型、观测

和基础科学

进行大量投资,以便能够
比我们今天更好地预测气候,

并管理我们的意外
和任何有意干预。

这可能很紧急。

最近的科学报告
预测,在接下来的几十年里,

地球的热病正在走向毁灭:

极端高温和火灾、

海洋生物的重大损失

、北极冰层崩塌、

流离失所和
数亿人的痛苦。

发烧甚至可能达到临界点
,变暖接管

,人类的努力不再

足以应对
自然系统的加速变化。

为了防止这种情况发生

,联合国国际气候变化专门委员会
预测

,我们需要在
2050 年之前停止甚至逆转排放。

如何? 我们必须迅速从根本上
改变主要经济部门,

包括能源、建筑、
农业、交通运输等。

我们必须尽快做到这
一点。

但是我们现在的热度如此之高

,以至于气候专家说
我们还必须从大气中去除

大量的二氧化碳

可能
是世界年排放量的 10 倍,其

方式尚未得到证实。

现在,
对于一个快速发展的问题,我们有缓慢的解决方案。 在我看来,

即使有最乐观的假设,

我们
在未来 10 到 30 年的风险敞口

也高得令人无法接受。

如果我们需要它

来减少地球的热病,
同时我们解决其根本原因,这样的干预措施能否提供速效药物?

这个想法确实令人担忧。

一些人非常担心
,即使研究这些干预措施也会

为推迟减排努力提供借口

这也被称为道德风险。

但是,像大多数药物一样,

干预
越多,你做的越多,干预就越危险,

所以研究实际上
倾向于得出这样一个事实

,即我们绝对、
肯定不能继续

用温室气体填充大气

,这些替代品是有风险的

,如果 我们要使用它们,

我们需要
尽可能少地使用它们。

但即便如此,

我们能否充分
了解这些干预措施

来管理风险?

谁来
决定何时以及如何进行干预?

如果有些人的情况更糟,

或者他们只是认为他们的情况更糟怎么办?

这些真的是很难的问题。

但真正让我担心的
是,随着气候影响的恶化,

领导人将被要求
以任何可用的方式做出回应。

我不希望他们在
没有真实信息

和更好的选择的情况下采取行动。

科学家们认为

在我们
开发或使用它们之前,仅仅评估这些干预措施就需要十年的研究。

然而今天,全球
对这些干预措施的投资

水平实际上为零。

因此,

如果我们希望政策
制定者掌握

有关这种急救药物的真实信息,我们需要迅速采取行动。

还有希望!

世界以前已经解决了
这类问题。

在 1970 年代,我们发现

对我们的保护性臭氧层的生存威胁。

在 1980 年代,科学家、
政治家和工业界

齐心协力,提出了一种解决方案,以替代
导致该问题的化学品。

他们通过世界上所有国家签署的唯一
具有法律约束力的环境协议

《蒙特利尔议定书》实现了这一目标。

今天仍然有效,

它导致了臭氧层的恢复

,是人类历史上最成功的
环境保护努力

我们现在面临的威胁要大得多,

但我们确实有
能力制定并商定解决方案,

以保护人们

并使我们的气候恢复健康。

这可能意味着为了保持安全,

我们需要在几十年内反射阳光,

同时绿化我们的工业
并去除二氧化碳。

这绝对意味着我们现在必须

努力了解我们
对这种急救药物的选择。

谢谢,

(掌声)