How Medicine Holds Keys for Conservation

Transcriber: Lauren Hill
Reviewer: Amanda Zhu

If you’ve ever had an X-ray, ultrasound,
CT or MRI performed,

you may have experienced
the unique feeling

of looking at your body from the inside.

It’s so strange to see a part of yourself
that you’re both intimately familiar with

and yet have never seen.

Those images are created
with a variety of techniques

using sound waves
and radiation and magnets.

But for simplicity’s sake,

let’s envision them each as tiny pixels
that come together to give us a picture

that gives us a deeper meaning
about our bodies.

These images are not
just for human bodies.

They’re also revolutionizing conservation.

I’m a marine mammal veterinarian,

and you and I are going to follow
the path of a pixel

to see how this work is changing the way
that we treat wildlife

and care for our natural world.

Let’s start in California
in the United States

with a sea lion named Cronutt.

Cronutt suffered brain damage
and developed epilepsy

after being exposed to domoic acid,

which is a biotoxin that’s
naturally produced by marine algae.

Toxin producing algal blooms are becoming
more frequent and more persistent

as our ocean warms from climate change,
affecting both mammals like Cronutt

and humans alike.

After multiple attempts at rehabilitation

and clearly unable
to survive on his own in the wild,

Cronutt went to live
at Six Flags Discovery Kingdom,

where they managed his epilepsy
with medication.

Our brains have nerve cells, or neurons.

Some excite and others inhibit or calm.

In certain forms of epilepsy,

the inhibitory neurons are lost,

leading to the over-stimulated
electrical activity of a seizure.

The pixels in MRI images can show us
where damage has occurred,

where neurons are active,

and even how different regions
of the brain connects with one another.

Dr. Scott Baraban’s lab

at the University
of California, San Francisco

has been researching
a new cell transplant therapy.

He uses specialized cells
that will turn into interneurons

to replace the damaged cells
with healthy ones.

These special cells integrate
into the circuitry of the brain

and restore the calming function,

effectively rewiring the brain
and stopping seizures.

Over time, Cronutt’s seizures
and behavior changes got worse,

and he was near death last year.

He needed one last shot.

An interdisciplinary team
of 27 specialists

from both the veterinary
and human medical fields came together.

We used both CT and MRI
to highlight the portion of his brain

called the hippocampus, which is shown
in the MRI image on the left,

outlined in the red box.

These images guided neurosurgeons
with a specially tailored needle

to deposit the cells
directly into the damaged site.

Last October,

Cronutt became the first sea lion ever
to receive an interneuron transplant.

And eight months later,

we’re cautiously optimistic
as he remains seizure-free.

Let’s next follow the path of a pixel
to Valencia, Spain.

Dr. Daniel Garcia leads
the veterinary team at Oceanographic,

where they rehabilitate
stranded sea turtles.

Many of these turtles are bycaught,

entangled in trawling nets
and dragged up from the depths.

Dr. Garcia’s team discovered by accident
while treating turtle patients

that sea turtles
can get decompression sickness,

or “the bends,”

when nitrogen bubbles out of the blood
during a rapid ascent to the surface.

We used to think that sea turtles
couldn’t get the bends,

because of unique adaptations
in their anatomy, physiology and behavior.

These animals can stay underwater
for up to seven hours at a time

without getting decompression sickness.

So what makes bycaught turtles different?

But bycaught turtles
are examined around the world,

and these bubbles
hadn’t been noted before,

Dr Garcia’s team made the discovery
thanks to collaborations.

First, they developed
strong collaborations

with the fisherman who were
accidentally catching the turtles.

Instead of looking for bubbles
inside of a long dead turtles,

the fishermen gave the team
almost immediate access to live turtles

directly after they were caught.

The fishermen also gave
detailed observations

describing a certain group of turtles
that seemed fine but would later die

several hours after being admitted
for rehabilitation.

The team also collaborated
with human physicians

to discover the disease.

They use CT to pinpoint the gas bubbles

and discover the damaged
tissue around them.

This CT image of the body of a sea turtle

shows the lighter areas that are gas
throughout the body of a turtle.

And these aren’t just tiny micro bubbles.

I want you to fill your mouth up with air

and really puff your cheeks out.

That’s the total volume of nitrogen gas

that might be found
inside the body of a turtle,

bubbles blocking blood vessels

and cutting off oxygen
to the brain, heart and beyond.

The team also discovered
a key to treatment.

Like the treatment for humans,

gas bubbles can diffuse
back into the blood

if the body’s re-pressurized.

They first developed
a crude decompression chamber

out of an autoclave.

And the result is just how I would imagine
we would send a sea turtle to space.

Over a decade, the team and the clinic
refined their techniques

to include a full-size hyperbaric chamber

that was originally designed to treat
human scuba divers with the bends.

And now the rate of recovery and release

for animals that arrive
at the clinic alive

is now 95 percent successful.

These advanced imaging techniques

are also revolutionizing
marine mammal medicine in Hong Kong.

Dr. Brian Cot, originally trained
as a diagnostic radiographer,

learning his expertise
in imaging, like CT and MRI,

that was originally designed
to treat human patients,

He recognized that the value

could be applied
to marine animals as well.

And he now leads the virtopsy,
or virtual autopsy, project,

with the cetacean stranding
response program in Hong Kong.

A body that washes up, dead on the beach,
can still provide a wealth of information.

Post-mortem exams
typically open the carcass

and examine the organs
in a systematic way.

It’s a treasure hunt,
and important things can be missed,

particularly if the body
is very decomposed.

Virtopsy combines CT and MRI

to give a guide to pathologists
before they even start their exam,

which improves their accuracy.

Tiny lesions that might have been missed
with routine sampling

are pinpointed for a thorough exam.

Two-dimensional images
can be combined into 3D renderings.

These groups of pixels

are particularly effective
for identifying lesions in bone

or gas bubbles like we saw
in the turtles in Valencia

or identifying trauma to organs,

and it’s safer.

Because the carcasses are neatly wrapped,

the risk to rescuers of catching
a zoonotic disease spread from an animal

is much lower.

Dr. Cot is based at
the City University of Hong Kong,

and his team includes both human
and veterinary radiologists,

veterinarians, technicians
and pathologists.

The project is a collaboration

between government, academia,
aquaria and non-governmental foundations.

Over the past six years,

240 marine animals were stranded
along Hong Kong waters,

and virtopsy was performed
on 74 percent of them.

That’s virtually every animal
that could be safely retrieved.

All of this incredible work
is happening simultaneously

all around the world.

All of it includes advanced imaging

that we couldn’t have
imagined a century ago

to peer deep within the body.

And it’s happening
while the threats we face

and our collective
human impact on the world

is accelerating.

I’m often asked, “Why?”

Why spend the money or the resources
to treat a single sea lion

or rehabilitate a few sea turtles?

I’m a veterinarian,

and I took an oath

to improve individual animal welfare
and relieve suffering.

And for Cronutt and those sea turtles,

these procedures saved their lives
and made all the difference.

But some critics say
that treating individual animals

is not enough,

and they’re absolutely right,

that in the big picture,
the individual impact is minimal.

When we’re tackling
the big conservation issues we face,

treating single animals
should be our last resort.

It’s not realistic on a large scale.

Brain surgery will not be the answer

for the majority
of brain damaged wild sea lions.

Decompression chambers won’t be the option

for the majority of bycaught sea turtles.

Few of the animals
that strand around the world

will pass through a CT
before their body is examined,

and the majority
will never be examined at all.

If we base our actions
only on the patients in front of us

and on our individual impact,

then that impact will remain minimal.

We have to think of our actions
outside of the scope of individual impact

and larger than ourselves.

Consider all of the ways that this work
does help more animals

and different species.

A first example is that sea lions,
like Cronutt, are helping humans today

and will continue
to help them in the future.

Biotoxins, like domoic acid,

are a growing threat
to both human and animal health.

They are a key example

of the direct effect that climate change
is having on our health.

And decades of research
on domoic acid in sea lions

has led to collaborations

where the public health department
uses reports of seizing sea lions

to better target their toxin sampling
and protect human health.

Cronutt himself is charismatic,

and his story may bring a glimmer of hope
to someone with a pet

or a loved one with epilepsy.

His procedure can be refined
to help other sea lions.

And although not a reality today,

treating Cronutt advances
this type of cell transplant therapy

towards one day helping humans
with incurable epilepsy.

A second example
is that complex discoveries

can lead to accessible
conservation solutions.

Discovering decompression
sickness in turtles

gave us direct clues on how to minimize
the disease’s effects -

no CT or decompression chamber needed.

We learned that if trawling times
are less than an hour,

the risk of decompression
sickness is very small.

If turtle excluder devices are used,
the risk is very small.

These devices allow turtles

to exit trawling nets
through a specialized escape hatch.

And for parts of the world
where rehabilitation is not an option,

releasing otherwise unharmed animals
back into the water as quickly as possible

may help the animals
to naturally decompress themselves.

Discovering decompression sickness
required complex tools,

but the solutions that arose
are accessible for all.

A third example is that this type of work
is leading to direct conservation support

around the world.

As our technology advances,

we have an even larger responsibility
to use it for the benefit of all.

Virtopsy makes exams easier,
faster and safer,

and it stores massive amounts of pixels.

These images preserve
the exam indefinitely.

Now reaching out across the world
for a second opinion

becomes possible and easier;

studies, over time, become more robust.

Imagine the difference between studying
a three-dimensional image like this one

compared with studying
a photograph of a bone.

Two vulnerable Indo-Pacific species
live in Hong Kong waters,

the finless porpoise
and the humpback dolphin.

For finless porpoise,

relatively little is known
about this species

in regions such as India
or the Persian Gulf.

Detailed virtopsy findings in Hong Kong
can be combined with surveys

of where these animals live
and how they use their habitat

to provide experts with a complete picture
on how to best protect them.

For humpback dolphins,

they live close to shore lines
throughout their range,

and these shorelines

are exactly where the majority
of our human impacts happen.

Understanding what human caused trauma,
such as entanglement or ship strike,

looks like in the body
of an Indo-Pacific humpback dolphin

can help responders recognize the trauma

in similar species,

such as a critically endangered
Atlantic humpback dolphin.

When we have a sick patient
in front of us,

time is of the essence.

It’s of the essence for us,
for wildlife species, for our ocean

and for the most important patient
that any of us will ever see:

our planet.

We must use these technologies
and innovations

to take ourselves outside
of the stretches of our imagination.

We must take these moonshots.

And yet equally as importantly,

we must transform the lessons
that arise from these complex procedures

into actions that are accessible for all.

So the next time that you see
an amazing image,

a captivating group of pixels,

remember that the healing impact
can extend far beyond a single patient.

Thank you.

抄写员:Lauren Hill
审阅者:Amanda Zhu

如果您曾经做过 X 光、超声波、
CT 或 MRI,

您可能体验

过从内部观察身体的独特感觉。

看到自己非常熟悉但从未见过的一部分真是太奇怪了

这些图像是

通过使用声波
、辐射和磁铁的各种技术创建的。

但是为了简单起见,

让我们将它们想象成微小的像素
,它们聚集在一起为我们提供了一幅图片

,让我们
对我们的身体有更深的意义。

这些图像
不仅适用于人体。

他们也在彻底改变保护。

我是一名海洋哺乳动物兽医

,你和我将跟随
像素的路径,

看看这项工作如何
改变我们对待野生动物

和照顾自然世界的方式。

让我们从美国加利福尼亚州

的一只名叫 Cronutt 的海狮开始。

Cronutt

在接触软骨藻酸

(一种由海藻自然产生的生物毒素)后遭受了脑损伤并患上了癫痫症

随着我们的海洋因气候变化而变暖,产生毒素的藻类繁殖变得越来越频繁和持久,
影响到像 Cronutt 这样的哺乳动物

和人类。

在多次尝试康复

并且显然无法
在野外独自生存之后,

克罗纳特去
了六旗探索王国,

在那里他们用药物治疗了他的癫痫症

我们的大脑有神经细胞或神经元。

有些人兴奋,有些人抑制或平静。

在某些形式的癫痫中

,抑制性神经元丢失,

导致癫痫发作的过度刺激
电活动。

MRI 图像中的像素可以向我们显示
损伤发生的位置、

神经元活跃的位置,

甚至
大脑的不同区域如何相互连接。 加利福尼亚大学旧金山分校的

Scott Baraban 博士的实验室

一直在研究
一种新的细胞移植疗法。

他使用
会变成中间神经元的特殊细胞,用健康

细胞替换受损细胞

这些特殊细胞整合
到大脑回路中

并恢复镇静功能,

有效地重新连接大脑
并阻止癫痫发作。

随着时间的推移,克罗纳特的癫痫发作
和行为改变变得更糟

,去年他濒临死亡。

他需要最后一枪。

来自兽医
和人类医学领域的 27 名专家组成的跨学科团队齐聚一堂。

我们同时使用 CT 和 MRI
来突出他大脑中

称为海马体的部分,如
左侧的 MRI 图像

所示,在红框中标出。

这些图像引导神经外科医生
使用专门定制的

针头将细胞
直接放入受损部位。

去年 10 月,

Cronutt 成为有史以来第一
只接受中间神经元移植的海狮。

八个月后,

我们谨慎乐观,
因为他仍然没有癫痫发作。

接下来让我们沿着像素的路径
前往西班牙瓦伦西亚。

Daniel Garcia 博士领导
着 Oceanographic 的兽医团队,

他们在那里修复
搁浅的海龟。

这些海龟中有许多是被误捕的,被

拖网缠住
并从深处拖上来。

Garcia 博士的团队
在治疗海龟患者时偶然发现,当

海龟在快速上升到海面的过程中从血液中冒出氮气时,海龟
会患上减压病

或“弯曲”

我们曾经认为海龟
无法弯曲,

因为
它们在解剖学、生理学和行为方面具有独特的适应性。

这些动物一次可以在水下
停留长达七个小时

而不会患上减压病。

那么,是什么让兼捕的海龟与众不同呢?

但是
,世界各地都在对兼捕的海龟进行检查,

而这些气泡
以前从未被注意到,

加西亚博士的团队通过合作发现了这一发现

首先,他们与意外抓到海龟的渔民建立了
强有力的合作

关系
。 渔民们没有在

死去已久的海龟体内寻找气泡,而是在它们被捕获后立即

让团队
几乎立即接触到活

海龟。

渔民们还
详细

观察了一组海龟
,这些海龟看起来很好,但后来

在接受康复治疗后几个小时就会死去

该团队还
与人类医生

合作发现了这种疾病。

他们使用 CT 来确定气泡

并发现
它们周围的受损组织。

这张海龟身体的 CT 图像显示了整个海龟身体

中较浅的气体区域

这些不仅仅是微小的微气泡。

我想让你用空气填满你的嘴,

然后真的鼓起你的脸颊。

是乌龟体内可能存在的氮气总量,

气泡阻塞血管

并切断
大脑、心脏及其他部位的氧气。

该团队还发现
了治疗的关键。

就像对人类的治疗一样,如果身体重新加压,

气泡会扩散
回血液中

他们首先

在高压釜中开发了一个原油减压室。

结果就像我想象的那样,
我们会将一只海龟送到太空。

十多年来,该团队和诊所
改进了他们的技术

,包括一个全尺寸的高压舱

,该舱最初设计用于
治疗弯曲的人类水肺潜水员。

现在,活着到达诊所的动物的康复率和释放率

已经达到

了 95%。

这些先进的成像技术

也正在彻底改变
香港的海洋哺乳动物医学。

Brian Cot 博士最初
是一名放射诊断技师,

学习了他
在 CT 和 MRI

等最初设计
用于治疗人类患者的成像方面的专业知识,

他认识到该价值

也可以
应用于海洋动物。

现在,他在香港负责鲸类搁浅应对计划的
虚拟解剖或虚拟尸检项目

一具被冲走,死在海滩上的尸体,
仍然可以提供大量信息。

验尸检查
通常会打开尸体


以系统的方式检查器官。

这是一场寻宝
,重要的事情可能会被错过,

尤其是在尸体
非常腐烂的情况下。

Virtopsy 结合 CT 和 MRI

为病理学家提供指导,
甚至在他们开始检查之前就可以

提高他们的准确性。 常规采样

可能遗漏的微小病变将

被精确定位以进行彻底检查。

二维图像
可以组合成 3D 渲染。

这些像素组

对于识别骨骼

或气泡中的病变(就像我们
在瓦伦西亚的海龟中看到的那样)

或识别器官创伤特别有效,

而且更安全。

由于尸体被整齐地包裹,

救援人员
感染从动物传播的人畜共患病的风险

要低得多。

Cot 博士
在香港城市大学工作

,他的团队包括人类
和兽医放射科医生、

兽医、技术人员
和病理学家。

该项目是

政府、学术界、
水族馆和非政府基金会之间的合作。

过去六年,有

240 只海洋动物
在香港水域搁浅

,其中 74% 进行了解剖。

这几乎是
所有可以安全回收的动物。

所有这些令人难以置信的工作
正在世界各地同时进行

所有这些都

包括我们在
一个世纪前

无法想象的先进成像技术,可以深入观察身体内部。

它发生
在我们面临的威胁

和我们
对世界的集体人类影响

正在加速的同时。

我经常被问到:“为什么?”

为什么要花费金钱或资源
来治疗一只海狮

或修复几只海龟?

我是一名兽医

,我宣誓

要改善个体动物福利
并减轻痛苦。

而对于 Cronutt 和那些海龟来说,

这些程序挽救了他们的生命,
并发挥了重要作用。

但一些批评者说
,只治疗个体动物

是不够的

,他们是绝对正确的

,从大局来看
,个体影响是微乎其微的。

当我们解决
我们面临的重大保护问题时,

治疗单一动物
应该是我们最后的手段。

在大范围内是不现实的。

脑部手术不会是

大多数脑损伤野生海狮的答案。

大多数误捕的海龟不会选择减压舱。 在世界各地

搁浅的动物中,很少有人


在检查身体之前通过 CT,

而且大多数动物
根本不会接受检查。

如果我们的行动
仅基于我们面前的患者

和我们个人的影响,

那么这种影响将仍然很小。

我们必须在
个人影响范围之外考虑我们的行为,

并且比我们自己更大。

考虑一下这项工作
确实帮助更多动物

和不同物种的所有方式。

第一个例子是,
像 Cronutt 一样的海狮今天正在帮助人类


并将在未来继续帮助他们。

生物毒素,如软骨藻酸,

对人类和动物健康的威胁越来越大。

它们

是气候变化对我们的健康产生直接影响的一个重要例子

数十年来对
海狮体内软骨藻酸的

研究促成了合作

,公共卫生部门
利用捕获海狮的报告

来更好地针对它们的毒素取样
并保护人类健康。

Cronutt 本人很有魅力

,他的故事可能会给养
宠物的人

或患有癫痫症的亲人带来一线希望。

他的程序可以改进
以帮助其他海狮。

尽管今天还没有成为现实,但

治疗 Cronutt 将
这种细胞移植疗法

推进到有一天可以帮助
患有无法治愈的癫痫症的人类。

第二个例子
是复杂的发现

可以导致易于获得的
保护解决方案。

在海龟身上发现减压病

为我们提供了如何
将疾病影响降至最低的直接线索——

无需 CT 或减压室。

我们了解到,如果拖网
时间少于一小时

,患减压病的风险
非常小。

如果使用海龟排除装置
,风险非常小。

这些装置允许海龟

通过专门的逃生舱口离开拖网。

对于世界
上无法进行康复治疗的部分地区,尽快

将未受伤害的动物
放回水中

可能有助于
动物自然减压。

发现减压病
需要复杂的工具,

但出现的解决方案是
所有人都可以使用的。

第三个例子是,这种类型的工作
正在导致世界各地的直接保护支持

随着我们技术的进步,

我们有更大的
责任将其用于造福所有人。

Virtopsy 使考试更容易、
更快、更安全,

并且它存储了大量的像素。

这些图像会
无限期地保留考试。

现在,向世界各地
寻求第二意见

变得可能且更容易;

随着时间的推移,研究变得更加稳健。

想象一下研究
像这样的三维图像


研究骨头照片之间的区别。 香港水域生活着

两种脆弱的印度太平洋物种

,江豚
和座头海豚。

对于江豚,

在印度或波斯湾等地区对该物种知之甚少

香港详细的动物解剖调查结果
可以与

对这些动物居住地
以及它们如何利用其栖息地的调查相结合,

为专家提供
有关如何最好地保护它们的完整图景。

对于座头海豚来说,

它们在整个活动范围内都生活在靠近

海岸线

的地方,而这些海岸线正是
我们人类影响的主要发生地。

了解人类造成的创伤,
例如纠缠或船舶撞击,


印太太平洋座头海豚身上的样子,

可以帮助响应者识别

类似物种的创伤,

例如极度濒危的
大西洋座头海豚。


我们面前有病人时,

时间至关重要。

对于我们
、野生动物物种、我们的海洋

以及
我们任何人都会看到的最重要的病人:

我们的星球,这至关重要。

我们必须利用这些技术
和创新


超越我们的想象。

我们必须拍摄这些登月照片。

但同样重要的是,

我们必须
将从这些复杂程序中汲取的教训

转化为所有人都能接受的行动。

因此,下次当您看到
令人惊叹的图像,

一组迷人的像素时,

请记住,治愈效果
可以远远超出单个患者。

谢谢你。