Kathryn A. Whitehead The tiny balls of fat that could revolutionize medicine TED

What if I told you that the pandemic
will save the lives of millions of people?

It’s a difficult thing to consider,

given how many loved ones
we’ve already lost.

But throughout the course
of human history,

massive public health crises

have resulted in innovation
in health care and technology.

For example, the Black Death
gave rise to the Gutenberg press

and the 1918 flu pandemic
led to modern vaccine technology.

The COVID-19 pandemic
has and will be no different.

Just look at our vaccines –

normally developed over many years,

and the mRNA vaccines were deployed
in a mind-blowing 11 months.

How is that even possible?

It was possible because scientists
have been working for many years

to get us to the point
where we could use mRNA quickly

in an emergency situation.

Specifically,

we’ve been working on how to help
mRNA with its biggest problem,

which is that it doesn’t normally go
to the right places inside of our bodies.

Fortunately, we got around
that problem just in time,

and I’d like to tell you about
the technology that we use to do it.

When mRNA is administered,

it’s injected into our muscles
or our bloodstream,

but we actually need it
to go inside of our cells.

Unfortunately, mRNA is fragile,

and our bodies will destroy it
before it goes very far.

You can think of mRNA like a glass vase
that you’d like to send in the mail

without a box and bubble wrap.

It’ll break long before
it’s been delivered.

And without an address on the box,

your postal delivery service will have
no idea where to take it.

And so if we’re going to use mRNA
as a therapeutic,

it needs our help.

It needs protection,
and it needs to be told where to go.

And that’s where I come in.

For over five decades,
scientists and engineers like myself

have been creating the shipping materials
for nucleic acid drugs,

like DNA and RNA.

Through trial and error,
we’ve created packages

that deliver intact vases
to the wrong address;

that delivered to the right address
but with a broken vase;

packages that get ripped apart
by attacking dogs;

and packages that throw out
the mail carrier’s back.

It’s taken many years
to get the science right.

Let me show you the result,

these tiny balls of fat
that we call lipid nanoparticles.

Let me tell you what they are
and how they work.

So first of all, “nano” just means
really, really small.

Think of how small a person is
compared to the diameter of the earth.

That’s how small a nanoparticle is
compared to the person.

These nanoparticles are made up of
several fatty molecules called lipids.

Fat is an awesome packing material –

nice and bouncy.

Interestingly, our cells are also
surrounded by fat

to keep them flexible and protected.

Years ago, scientists had the idea
to create lipid nanoparticles

that would act like a Trojan horse.

Because the lipids
in the nanoparticle look similar

to the membranes that surround our cells,

the cells are willing to bring
the nanoparticle inside,

and that’s when the mRNA
is released into the cell.

So what, exactly, are the lipids
in these nanoparticles?

There are four ingredients
in addition to the mRNA,

and I’ll tell you about each one.

First, there’s a lipid
called a phospholipid.

This is the primary ingredient
in our cell membranes,

which are the walls of fat
that separate the insides of our cells

from everything that surrounds them.

Phospholipids have a head
that likes water

and a tail that likes other fatty things.

So when you throw a bunch
of phospholipids together in water,

they form this beautiful structure
called a lipid bilayer.

Here, the heads face the inside
and the outside of the cell,

which is water,

and the fat-loving parts of the molecule
hang out together in the middle.

In lipid nanoparticles,

phospholipids have a similar role

of keeping all of the other
ingredients organized.

Second, there’s a lipid
called cholesterol.

Why, if cholesterol has a bad reputation,

would we want to use it
in a therapeutic nanoparticle?

It turns out that while cholesterol can
be bad when it’s in our bloodstream,

it’s actually a really good thing
for our cell membranes.

And that’s because those phospholipids
I just told you about,

they are entirely too free
with themselves,

and they are prone to falling apart.

Cholesterol is a stiff molecule

that wedges itself
in between the other lipids

to fill in the gaps
and hold them all together.

It plays a similar role
in our lipid nanoparticles.

It provides structural support
so the nanoparticles don’t fall apart

in between the injection
and when they get into our cells.

Third, there’s a lipid called
an ionizable lipid.

Here, “ionizable” means that when
these particles are in the bloodstream,

they’re neutrally charged,
which helps with their safety.

Then they switch to a positive
charge inside of our cells,

which helps them release the mRNA.

Ionizable lipids are special because
they have to be made in the lab,

and scientists around the world

have tested tens of thousands
of these materials

to find ones that are good
at delivering mRNA safely.

And because they’re made in the lab,

they tend to be proprietary
to the company that invented them.

So, for example, Moderna and BioNTech,
the company that partnered with Pfizer,

they discovered different
ionizable lipids,

and that is the only important ingredient
in their COVID-19 vaccines that differ.

And even then, their ionizable lipids
aren’t even that different,

which is reassuring, because when
independent groups of scientists

converge on similar solutions,

it’s easier to trust the result.

Finally, one more ingredient.

This one is a polymer
called polyethylene glycol.

So let’s call it PEG. That’s much easier.

PEG is a water-loving molecule.

So it surrounds the lipid nanoparticle
and it holds it all together.

You can think of the other three lipids
as the box and the bubble wrap

for the mRNA,

and the PEG as the packing tape.

You may have heard in the news
about a tiny fraction of people

that have allergic responses
to the vaccine.

There is some evidence that PEG could be
contributing to these allergic reactions.

And that’s because people
are routinely exposed to PEG

in cosmetic and household products,

and some people have already
developed antibodies against PEG.

But why would this happen
to some people and not to others?

It turns out that every person’s immune
system is different,

and just the same way
that some people are allergic to latex,

other people are allergic to PEG.

It’s important to keep in mind, however,

that PEG has had a long
history of safe use

as part of FDA-approved drug formulations,

and these vaccine allergies could be
caused by things other than PEG.

More research is needed to get
to the bottom of these side effects.

All right, so let’s take a step back
and look at our whole nanoparticle.

Beautiful, right?

When these ingredients
all fit together nicely,

the result is a deliverywoman’s dream.

In the case of the vaccines,

after these nanoparticles
get injected into our muscle,

they take the mRNA into our cells.

There, the mRNA acts like
an instruction manual

that tells our cells
to make a foreign protein,

in this case, the coronavirus
spike protein.

When our immune cells
see the spike protein,

they rush to protect us from it,

and they teach themselves to remember it,

so that they can kill it
if it ever returns.

As we speak,

the mRNA vaccines are out there
saving lives from the coronavirus.

They were our first and best tool
to combat this nightmare,

and they are our best hope
of responding swiftly to viral variance

because we can keep our lipid
nanoparticle packaging the same,

and all we have to do is swap out
the mRNA that’s inside.

But here’s the best part:

for mRNA therapeutics,

these vaccines are only the beginning.

mRNA can be used to treat
or cure many diseases.

So in the future, we will likely have
treatments for many terrible diseases,

including cystic fibrosis,

muscular dystrophy

and sickle cell anemia.

These diseases are caused
by mutated proteins,

and we can use mRNA to ask our cells

to make the correct version
of these proteins.

We’ll have treatments for cancer –
breast, blood, lungs – you name it.

Here, we’ll use mRNA
to teach our immune cells

how to find and kill cancer cells.

And then, if we’re lucky,
we’ll have vaccines

against some of the most deadly
and feared pathogens across the globe,

including malaria, Ebola and HIV.

Some of these products
are already in clinical trials,

and the success of the COVID-19
vaccines will pave the way

for future generations of these therapies.

This is how the pandemic will save
the lives of millions.

It catalyzed the most rapid
vaccine development in history

and brought to life a niche, previously
unapproved form of technology.

And in our desperation,
we gave that technology a chance.

Now we’re collecting long-term
safety and efficacy data

from hundreds of millions of people.

And with these data,
interest in the technology,

funding for the technology

and trust in the technology

will continue to grow.

Looking ahead,

the packaging and delivery of mRNA
to the right organs and tissues

will continue to be
one of the most significant challenges

to implementing this technology.

And so my colleagues and I are going
to be busy for a very long time.

Ultimately, I’m here
with a message of hope.

We are on the cusp of a revolution.

mRNA is about to change
the world forever,

and it’s all thanks
to these fatty little balls

that take this miracle medicine
to exactly where it’s needed.

Thank you.

(Applause)

如果我告诉你大流行
将挽救数百万人的生命怎么办?

考虑到我们已经失去了多少亲人,这是一件很难考虑的事情

但在
整个人类历史进程中,

大规模的公共卫生

危机导致
了医疗保健和技术的创新。

例如,黑死病
催生了古腾堡出版社

,1918 年流感大流行
催生了现代疫苗技术。

COVID-19 大流行
已经并将不会有所不同。

看看我们的疫苗——

通常是多年开发的,

而 mRNA 疫苗是
在令人兴奋的 11 个月内部署的。

这怎么可能呢?

这是可能的,因为科学家
们多年来一直在

努力使我们能够在紧急情况
下快速使用 mRNA

具体来说,

我们一直在研究如何帮助
mRNA 解决其最大的问题,

即它通常不会
进入我们体内的正确位置。

幸运的是,我们及时解决了
这个问题

,我想告诉你
我们用来解决这个问题的技术。

施用 mRNA 时,

它会被注射到我们的肌肉
或血液中,

但我们实际上需要
它进入我们的细胞内部。

不幸的是,mRNA很脆弱

,我们的身体会
在它走得很远之前摧毁它。

您可以将 mRNA 想象成一个玻璃花瓶
,您希望在

没有盒子和气泡包装的情况下通过邮件发送。

它会在交付之前很久就坏了。

如果盒子上没有地址,

您的邮政服务将
不知道将其带到哪里。

因此,如果我们要使用 mRNA
作为治疗剂,

它需要我们的帮助。

它需要保护
,需要告诉它去哪里。

这就是我的切入点。

5 多年来,
像我这样的科学家和工程师

一直在

DNA 和 RNA 等核酸药物制造运输材料。

通过反复试验,
我们创建

了将完整的花瓶运送
到错误地址的包裹;

送到了正确的地址,
但花瓶坏了;

被攻击狗撕开的包裹;


扔掉邮递员背部的包裹。

花了很多年
才把科学弄好。

让我向你展示结果,

这些微小的脂肪球
,我们称之为脂质纳米颗粒。

让我告诉你它们是什么以及它们
是如何工作的。

所以首先,“纳米”只是意味着
非常非常小。

想想一个人
与地球的直径相比有多小。

这就是纳米粒子
与人相比的大小。

这些纳米颗粒由
几种称为脂质的脂肪分子组成。

脂肪是一种很棒的包装材料——

又好又有弹性。

有趣的是,我们的细胞也
被脂肪包围,

以保持它们的灵活性和保护性。

多年前,科学家们产生
了制造

类似于特洛伊木马的脂质纳米颗粒的想法。

因为
纳米颗粒中的脂质看起来

类似于我们细胞周围的膜,

所以细胞愿意
将纳米颗粒带入内部

,这就是 mRNA
被释放到细胞中的时候。

那么,这些纳米颗粒中的脂质究竟是什么

除了 mRNA 之外,还有四种成分,

我会告诉你每种成分。

首先,有一种
称为磷脂的脂质。


是我们细胞膜的

主要成分,细胞膜是脂肪壁
,将我们的细胞内部与

周围的一切分隔开来。

磷脂有一个喜欢水的头部

和一个喜欢其他脂肪物质的尾巴。

因此,当您将
一堆磷脂一起放入水中时,

它们会形成这种美丽的结构,
称为脂质双层。

在这里,头部面向细胞的内部
和外部,

即水,

分子中的脂肪部分
一起悬挂在中间。

在脂质纳米颗粒中,

磷脂具有

保持所有其他
成分有序的类似作用。

其次,有一种脂质
叫做胆固醇。

为什么,如果胆固醇名声不好,

我们会想
在治疗性纳米颗粒中使用它吗?

事实证明,虽然胆固醇
在我们的血液中可能是有害的,

但它实际上对我们的细胞膜是一件非常好的事情

那是因为
我刚才告诉你的那些磷脂,

它们
对自己太自由了

,它们很容易分崩离析。

胆固醇是一种坚硬的分子

,可以将
自身楔入其他脂质之间

以填补空隙
并将它们保持在一起。


在我们的脂质纳米颗粒中起着类似的作用。

它提供了结构支撑,
因此纳米粒子不会

在注射之间
和它们进入我们的细胞时分崩离析。

第三,有一种称为
可电离脂质的脂质。

在这里,“可电离”意味着当
这些粒子在血液中时,

它们是带中性电荷的,
这有助于它们的安全。

然后它们
在我们的细胞内转换成正电荷,

这有助于它们释放 mRNA。

可电离脂质之所以特殊,是因为
它们必须在实验室中制造

,世界各地的科学家

已经测试了数以万计
的此类材料,

以寻找能够
安全递送 mRNA 的材料。

而且因为它们是在实验室制造的,

它们往往
是发明它们的公司的专有产品。

因此,例如,
与辉瑞合作的 Moderna 和 BioNTech 公司

发现了不同的
可电离脂质

,这
是他们的 COVID-19 疫苗中唯一不同的重要成分。

即便如此,他们的可电离
脂质甚至没有那么不同,

这令人放心,因为当
独立的科学家小组

聚集在类似的解决方案上时,

更容易相信结果。

最后,还有一种成分。

这是一种
称为聚乙二醇的聚合物。

所以我们称之为PEG。 这要容易得多。

PEG是一种亲水分子。

所以它围绕着脂质纳米颗粒
,并将它们结合在一起。

您可以将其他三种脂质
视为 mRNA 的盒子和气泡

膜,

将 PEG 视为包装胶带。

您可能在新闻中听说过
一小部分人

对疫苗有过敏反应

有一些证据表明 PEG 可能
导致这些过敏反应。

这是因为人们
经常接触

化妆品和家居产品中的 PEG,

而且有些人已经
产生了针对 PEG 的抗体。

但为什么这会发生
在某些人身上,而不会发生在其他人身上呢?

事实证明,每个人的免疫
系统都是不同的,

就像有些人对乳胶过敏,有些

人对 PEG 过敏一样。

然而,重要的是要记住,

作为 FDA 批准的药物配方的一部分,PEG 的安全使用历史悠久

,这些疫苗过敏可能是
由 PEG 以外的其他因素引起的。

需要更多的研究来
了解这些副作用的根源。

好吧,让我们退后一步
,看看我们的整个纳米粒子。

漂亮,对吧?

当这些成分
很好地结合在一起时

,结果就是女送货员的梦想。

就疫苗而言,

在这些纳米颗粒
被注射到我们的肌肉中后,

它们会将 mRNA 带入我们的细胞。

在那里,mRNA 就像
一本指导手册

,告诉我们的
细胞制造一种外来蛋白质,

在这种情况下,就是冠状病毒
刺突蛋白。

当我们的免疫细胞
看到刺突蛋白时,

它们会争先恐后地保护我们免受它的侵害,

并且它们会教自己记住它,

以便
在它再次出现时将其杀死。

正如我们所说

,mRNA疫苗正在
拯救冠状病毒的生命。

它们是我们对抗这一噩梦的第一个也是最好的工具

,它们是我们
快速应对病毒变异的最大希望,

因为我们可以保持脂质
纳米颗粒包装不变,

而我们所要做的就是换掉
里面的 mRNA。

但这是最好的部分:

对于 mRNA 疗法,

这些疫苗只是开始。

mRNA可用于治疗
或治愈许多疾病。

所以在未来,我们很可能会
治疗许多可怕的疾病,

包括囊性纤维化、

肌营养不良

和镰状细胞性贫血。

这些疾病是
由突变的蛋白质引起的

,我们可以使用 mRNA 要求我们的

细胞制造
这些蛋白质的正确版本。

我们将对癌症进行治疗——
乳腺癌、血液、肺——你说的。

在这里,我们将使用 mRNA
来教我们的免疫细胞

如何发现和杀死癌细胞。

然后,如果我们幸运的话,
我们将拥有

针对全球一些最致命
和最可怕的病原体的疫苗,

包括疟疾、埃博拉病毒和艾滋病毒。

其中一些
产品已经在临床试验中,

而 COVID-19 疫苗的成功
将为

这些疗法的后代铺平道路。

这就是大流行将如何
挽救数百万人的生命。

它催化了历史上最快速的
疫苗开发,

并带来了一种以前
未经批准的利基技术形式。

在我们绝望的情况下,
我们给了这项技术一个机会。

现在,我们正在收集数亿人的长期
安全性和有效性数据

有了这些数据,
对技术的兴趣、对技术的

资助和

对技术的信任

将继续增长。

展望未来,

将 mRNA 包装和递送
到正确的器官和组织

将继续是实施这项技术
的最重大挑战之一

因此,我和我的同事们
将忙碌很长时间。

最终,我
带着希望的信息来到这里。

我们正处于一场革命的风口浪尖。

mRNA 即将
永远改变世界

,这一切都要
归功于这些肥大的小

球将这种神奇的药物
带到需要的地方。

谢谢你。

(掌声)