Magical metals how shape memory alloys work Ainissa Ramirez

Today we’re talking about weird materials

that we use in space, in robots
and in your mouth.

I’m talking about shape memory alloys.

Like the name says,

these are metals that remember different shapes.

To understand how these metals work,

we’ve got to talk about atoms and organizing.

Let’s talk about atoms first.

Atoms are tiny bits of matter
that you cannot see with your eye

yet they make up everything in our world,

from the chair that you’re sitting on
to your cell phone.

Atoms have some surprising ways of behaving too.

We’ll talk about that shortly.

Now, how big is an atom?

Well, imagine pulling one of your hairs
out of your head

and whittling it like a stick 100,000 times.

One of those shavings
would be the width of an atom.

They’re that small.

Now let’s talk about atoms and organizing.

You may not know this,
but atoms arrange themselves

similar to the way we humans arrange ourselves.

Sometimes they sit in rows, like we do

on a bus or an airplane.

We call that seating arrangement a phase.

Other times they sit diagonal from each other,

sort of like seats in a movie theater or sports stadium.

This is another phase.

When atoms move from one seating to another

this is called a phase change.

Phase changes are all around us.

You may already know about water’s phases:

solid, liquid and gas.

Many other materials have phases like that too.

Some of them have several solid phases.

OK. Back to those shape memory alloys
we mentioned before.

When we say that the metals
remember their different shapes,

what we’re really saying is they
remember different seating arrangements

of atoms. When the atoms rearrange,

the metal moves from one shape to another.

Let’s look at a phase change in action.

Here I have a metal wire that
is made out of nickel and titanium.

This metal wire is a shape memory alloy,

and I’m going to make it switch
between its different shapes

using heat from a lighter.

Watch this.

I’m going to wrap this wire around my finger

and then heat it.

Amazing!

That wire returns to a straight line,
when I heat it.

Let’s try that again.

I’m going to wrap it around my finger,
and heat it.

Yep, that’s still amazing.

Not only is it amazing, this is weird,

because metals generally don’t do that.

Here’s a paper clip. When I heat it, I get nothing.

What we’re seeing is the shape memory wire
changing phases when it gets hot.

When the wire is cold, atoms
are in a diagonal arrangement,

like the movie theater seating,
we talked about before.

We call this a monoclinic arrangement,

and scientists will call this phase martensite.

When I heated up the wire,

the atoms moved into columns like airplane seating.

This is a cubic arrangement.

Scientists will call this phase austenite.

So when we added the heat,
the atoms shifted positions seamlessly,

and they’ll do this forever.

They have this coordinated motion,
just like members of a tireless marching band.

Each makes a small shift, but all
together those small shifts

create a totally different pattern.

So that’s pretty cool, but
where do we use these materials?

Well, if you look in the sky tonight,

shape memory alloys are at work -

on Mars. They’re used to move
panels on the Mars rover,

so that it can study the environment.

Like our metal straightened when it was heated,

the metals holding the panels
will move when electrically heated.

When we stop heating the shape memory metal,

the panel will return back,
due to an opposing spring.

Back on Earth, shape memory alloys
are used to open up clogged arteries

as stents, which are small collapsible springs

that force open passages.

Shape memory alloys are also used to move robots,

toy butterflies, teeth in braces,
and for a perfect fit every time,

shape memory wires are used
as underwires in bras.

Now you know Victoria’s secret.

By popping a bra into the dryer,
it’ll be brand new every time.

So whether it’s on Mars or in your mouth,
small atomic movements

can create huge changes,

and understanding the way atoms behave

allows us to make materials
that make our world a better place.

今天我们谈论的

是我们在太空、机器人
和你嘴里使用的奇怪材料。

我说的是形状记忆合金。

顾名思义,

这些金属可以记住不同的形状。

要了解这些金属是如何工作的,

我们必须谈谈原子和组织。

我们先来谈谈原子。

原子是
你肉眼无法看到的微小物质,

但它们构成了我们世界上的一切,

从你坐的椅子
到你的手机。

原子也有一些令人惊讶的行为方式。

我们很快就会谈到这一点。

现在,原子有多大?

好吧,想象
一下从头上拔出一根头发,

然后像一根棍子一样削掉它 100,000 次。

其中
之一是原子的宽度。

他们那么小。

现在让我们谈谈原子和组织。

你可能不知道这一点,
但原子排列自己

的方式与我们人类排列自己的方式相似。

有时他们排成一排,就像我们

在公共汽车或飞机上一样。

我们称这种座位安排为一个阶段。

其他时候,他们彼此对角坐着,

有点像电影院或体育场的座位。

这是另一个阶段。

当原子从一个座位移动到另一个座位时,

这称为相变。

相变就在我们身边。

您可能已经知道水的相态:

固体、液体和气体。

许多其他材料也有类似的相。

它们中的一些具有几个固相。

行。 回到
我们之前提到的那些形状记忆合金。

当我们说金属能
记住它们不同的形状时,

我们真正的意思是它们能
记住

原子的不同座位排列。 当原子重新排列时

,金属从一种形状移动到另一种形状。

让我们看一下行动中的相变。

在这里,我有一根
由镍和钛制成的金属线。

这条金属线是一种形状记忆合金

,我将用打火机的热量让它
在不同的形状之间切换

看这个。

我要把这条线绕在我的手指上

,然后加热。

惊人!

当我加热它时,那根电线会恢复成一条直线

让我们再试一次。

我要把它包在我的手指上,
然后加热。

是的,这仍然是惊人的。

这不仅令人惊奇,而且很奇怪,

因为金属通常不会那样做。

这是一个回形针。 当我加热它时,我什么也得不到。

我们看到的是形状记忆线
在变热时会改变相位。

当电线冷时,原子
呈对角线排列,

就像
我们之前讨论过的电影院座位一样。

我们称之为单斜排列

,科学家将这种相称为马氏体。

当我加热电线时

,原子移动到像飞机座位一样的柱子中。

这是一个立方体排列。

科学家将这一阶段称为奥氏体。

因此,当我们添加热量时
,原子会无缝地移动位置,

并且它们会永远这样做。

他们有这种协调的动作,
就像一个不知疲倦的军乐队的成员。

每一个都会产生一个小转变,但
这些小转变共同

创造了一个完全不同的模式。

所以这很酷,但是
我们在哪里使用这些材料呢?

好吧,如果你今晚仰望天空,

形状记忆合金正在发挥作用——

在火星上。 它们用于移动
火星探测器上的面板,

以便它可以研究环境。

就像我们的金属在加热时变直一样,

支撑面板的金属
在电加热时也会移动。

当我们停止加热形状记忆金属时

,由于弹簧相反,面板将返回

回到地球上,形状记忆合金
被用作支架来打开阻塞的动脉

,支架是一种小的可折叠弹簧

,可以迫使通道打开。

形状记忆合金还用于移动机器人、

玩具蝴蝶、牙套中的牙齿
,为了每次都能完美贴合,

形状记忆金属丝被
用作胸罩的钢圈。

现在你知道维多利亚的秘密了。

通过将胸罩放入烘干机
,每次都会是全新的。

因此,无论是在火星上还是在你的嘴里,
微小的原子运动

都会产生巨大的变化,

而了解原子的行为方式

可以让我们制造
出让我们的世界变得更美好的材料。