Schrdingers cat A thought experiment in quantum mechanics Chad Orzel

Austrian physicist Erwin Schrödinger is
one of the founders of quantum mechanics,

but he’s most famous for something he
never actually did:

a thought experiment involving a cat.

He imagined taking a cat and
placing it in a sealed box

with a device that had a 50% chance
of killing the cat in the next hour.

At the end of that hour, he asked,
“What is the state of the cat?”

Common sense suggests that the cat
is either alive or dead,

but Schrödinger pointed out that according
to quantum physics,

at the instant before the box is opened,
the cat is equal parts alive and dead,

at the same time.

It’s only when the box is opened
that we see a single definite state.

Until then, the cat is
a blur of probability,

half one thing and half the other.

This seems absurd,
which was Schrödinger’s point.

He found quantum physics so
philosophically disturbing,

that he abandoned the theory
he had helped make

and turned to writing about biology.

As absurd as it may seem, though,
Schrödinger’s cat is very real.

In fact, it’s essential.

If it weren’t possible for quantum objects
to be in two states at once,

the computer you’re using to watch this
couldn’t exist.

The quantum phenomenon of
superposition

is a consequence of the dual
particle and wave nature of everything.

In order for an object to have
a wavelength,

it must extend over some region of space,

which means it occupies many positions
at the same time.

The wavelength of an object limited
to a small region of space

can’t be perfectly defined, though.

So it exists in many different wavelengths
at the same time.

We don’t see these wave properties
for everyday objects

because the wavelength decreases
as the momentum increases.

And a cat is relatively big and heavy.

If we took a single atom and blew
it up to the size of the Solar System,

the wavelength of a cat
running from a physicist

would be as small as an atom
within that Solar System.

That’s far too small to detect, so we’ll
never see wave behavior from a cat.

A tiny particle, like an electron, though,

can show dramatic evidence
of its dual nature.

If we shoot electrons one at a time at a
set of two narrow slits cut in a barrier,

each electron on the far side is detected
at a single place at a specific instant,

like a particle.

But if you repeat this
experiment many times,

keeping track of all the
individual detections,

you’ll see them trace out a pattern that’s
characteristic of wave behavior:

a set of stripes - regions with many
electrons

separated by regions
where there are none at all.

Block one of the slits
and the stripes go away.

This shows that the pattern is a result of
each electron going through both slits

at the same time.

A single electron isn’t choosing
to go left or right

but left and right simultaneously.

This superposition of states also leads
to modern technology.

An electron near the nucleus of an atom
exists in a spread out, wave-like orbit.

Bring two atoms close together,

and the electrons don’t need to
choose just one atom

but are shared between them.

This is how some chemical bonds form.

An electron in a molecule isn’t on
just atom A or atom B, but A+ B.

As you add more atoms,
the electrons spread out more,

shared between vast numbers of atoms
at the same time.

The electrons in a solid aren’t
bound to a particular atom

but shared among all of them,
extending over a large range of space.

This gigantic superposition of states

determines the ways electrons move
through the material,

whether it’s a conductor or an insulator
or a semiconductor.

Understanding how electrons are shared
among atoms

allows us to precisely control the
properties of semiconductor materials,

like silicon.

Combining different semiconductors
in the right way

allows us to make transistors
on a tiny scale,

millions on a single computer chip.

Those chips and their spread out electrons

power the computer you’re using to
watch this video.

An old joke says that the Internet
exists to allow the sharing of cat videos.

At a very deep level, though,
the Internet owes its existance

to an Austrian physicist
and his imaginary cat.

奥地利物理学家 Erwin Schrödinger 是
量子力学的创始人之一,

但他最出名的是他
从未真正做过的事情:

涉及猫的思想实验。

他想象着把一只猫
放在一个密封的盒子里

,里面装有一个装置,
在接下来的一个小时内有 50% 的几率杀死这只猫。

在那一小时结束时,他问道:
“猫的状态如何?”

常识表明
猫要么活着,要么死了,

但薛定谔指出,
根据量子物理学,

在打开盒子之前的那一刻
,猫是同时活的和死的

只有当盒子打开时
,我们才能看到一个确定的状态。

在那之前,猫
是概率的模糊,

一半是一回事,一半是另一回事。

这似乎是荒谬的,
这正是薛定谔的观点。

他发现量子物理学在
哲学上如此令人不安,

以至于他放弃了
他帮助提出的理论

,转而撰写有关生物学的文章。

尽管看起来很荒谬,但
薛定谔的猫却非常真实。

事实上,这是必不可少的。

如果量子物体
不可能同时处于两种状态,

那么你用来观察它的计算机
就不可能存在。 叠加

的量子现象是

一切事物的双重粒子和波动性质的结果。

为了使物体
具有波长,

它必须延伸到空间的某个区域,

这意味着它同时占据许多位置

但是,无法完美定义仅限
于空间小区域的物体的波长

所以它同时存在于许多不同的波长
中。

我们看不到
日常物体的这些波特性,

因为波长
随着动量的增加而减小。

而且猫比较大,比较重。

如果我们把一个原子炸成
太阳系的大小,

从物理学家那里跑出来的猫的波长

将与太阳系中的一个原子一样小

这太小而无法检测到,所以我们永远
不会看到猫的波浪行为。

然而,像电子这样的微小粒子

可以显示
出其双重性质的戏剧性证据。

如果我们
在栅栏上切开的两个窄缝中一次一个地发射电子,那么在特定时刻,

远侧的每个电子都会在一个地方被检测到

就像一个粒子一样。

但是,如果你多次重复这个
实验,

跟踪所有
单独的检测,

你会看到它们描绘出一种
具有波浪行为特征的模式:

一组条纹——有许多

电子的
区域被完全没有电子的区域隔开 .

挡住其中一条缝
,条纹就消失了。

这表明该图案是
每个电子同时通过两个狭缝的结果

单个电子不是选择
向左或向右,

而是同时向左和向右。

这种状态的叠加也导致
了现代技术。

原子核附近的电子
存在于一个展开的波浪状轨道中。

将两个原子靠近在一起

,电子不需要
只选择一个原子,

而是在它们之间共享。

这就是一些化学键的形成方式。

分子中的电子不仅
在原子 A 或原子 B 上,而且在 A+ B 上。

当你添加更多原子时
,电子分布得更多,同时

在大量原子之间共享

固体中的电子不
与特定原子结合,

而是在所有原子之间共享,
延伸到很大范围的空间。

这种巨大的状态叠加

决定了电子
在材料中移动的方式,

无论是导体、绝缘体
还是半导体。

了解电子如何
在原子之间共享

使我们能够精确控制
半导体材料(

如硅)的特性。 以正确的方式

组合不同的半导体

使我们能够在单个计算机芯片
上制造小规模的晶体管,

数以百万计。

这些芯片及其分散的电子

为您用来观看此视频的计算机提供动力

一个老笑话说,互联网的
存在是为了允许分享猫视频。

然而,在非常深的层面上
,互联网的存在

归功于一位奥地利物理学家
和他想象中的猫。