The Suns surprising movement across the sky Gordon Williamson

Suppose you placed a camera
at a fixed position,

took a picture of the sky

at the same time everyday
for an entire year

and overlayed all of the photos
on top of each other.

What would the sun look like
in that combined image?

A stationary dot?

A circular path?

Neither.

Oddly enough, it makes this
figure eight pattern,

known as the Sun’s analemma,

but why?

The Earth’s movement
creates a few cycles.

First of all, it rotates on its axis
about once every 24 hours,

producing sunrises and sunsets.

At the same time,
it’s making a much slower cycle,

orbiting around the sun
approximately every 365 days.

But there’s a twist.

Relative to the plane of its orbit,

the Earth doesn’t spin
with the North Pole pointing straight up.

Instead, its axis has a constant tilt
of 23.4 degrees.

This is known as the Earth’s axial tilt,
or obliquity.

A 23-degree tilt may not seem important,

but it’s the main reason that
we experience different seasons.

Because the axis remains tilted
in the same direction

while the Earth makes its annual orbit,

there are long periods each year

when the northern half of the planet
remains tilted toward the Sun

while the southern half is tilted away

and vice versa,

what we experience as summer and winter.

During summer in a given hemisphere,

the Sun appears higher in the sky,
making the days longer and warmer.

Once a year, the Sun’s declination,

the angle between the equator

and the position on the Earth
where the Sun appears directly overhead

reaches its maximum.

This day is known as the summer solstice,
the longest day of the year,

and the one day where the Sun
appears highest in the sky.

So the Earth’s axial tilt

partially explains why the Sun
changes positions in the sky

and the analemma’s length

represents the full 46.8 degrees
of the sun’s declination

throughout the year.

But why is it a figure eight
and not just a straight line?

This is due to another feature
of the Earth’s revolution,

its orbital eccentricity.

The Earth’s orbit around the Sun
is an ellipse,

with its distance to the Sun
changing at various points.

The corresponding change
in gravitational force

causes the Earth to move
fastest in January

when it reaches
its closest point to the Sun,

the perihelion,

and the slowest in July
when it reaches its farthest point,

the aphelion.

The Earth’s eccentricity
means that solar noon,

the time when the Sun
is highest in the sky,

doesn’t always occur
at the same point in the day.

So a sundial may be as much
as sixteen minutes ahead

or fourteen minutes behind
a regular clock.

In fact, clock time and Sun time
only match four times a year.

The analemma’s width represents
the extent of this deviation.

So how did people know
the correct time years ago?

For most of human history,

going by the Sun’s position
was close enough.

But during the modern era,

the difference between sundials
and mechanical clocks became important.

The equation of time,
introduced by Ptolemy

and later refined based
on the work of Johannes Kepler,

converts between apparent solar time and
the mean time we’ve all come to rely on.

Globes even used to have
the analemma printed on them

to allow people to determine
the difference

between clock time and solar time
based on the day of the year.

Just how the analemma appears
depends upon where you are.

It will be tilted at an angle
depending on your latitude

or inverted if you’re in
the southern hemisphere.

And if you’re on another planet,

you might find something
completely different.

Depending on that planet’s
orbital eccentricity and axial tilt,

the analemma might appear as a tear drop,

oval,

or even a straight line.

假设您将相机放置
在固定位置,一整年每天在同一时间

拍摄天空照片,然后将

所有
照片叠加在一起。

合成图像中的太阳会是什么样子

固定点?

圆形路径?

两者都不。

奇怪的是,它使这个
八字形图案,

被称为太阳的八字形,

但为什么呢?

地球的运动会
产生几个周期。

首先,它
大约每 24 小时绕其轴旋转一次,

产生日出和日落。

同时,
它的周期要慢得多,

大约每 365 天绕太阳运行一次。

但有一个转折点。

相对于其轨道平面

,地球不会
在北极指向正上方的情况下自转。

相反,它的轴具有
23.4 度的恒定倾斜度。

这被称为地球的轴向倾斜
或倾斜。

23 度倾斜可能看起来并不重要,

但它是
我们经历不同季节的主要原因。

因为在地球绕其年度轨道运行时,轴保持
向同一方向倾斜,所以

每年有很长一段

时间,地球的北半部
仍然向太阳倾斜,

而南半部则远离太阳

,反之亦然,

我们所经历的情况是 夏季和冬季。

在特定半球的夏季

,太阳在天空中显得更高,
使白天更长、更温暖。

每年一次,太阳的赤纬,

赤道

与地球
上太阳直接出现在头顶的位置之间的角度

达到最大值。

这一天被称为夏至
,是一年中白昼最长

的一天,也是太阳
出现在天空最高的一天。

因此,地球的轴向倾斜

部分解释了为什么太阳
在天空中的位置会发生变化

,而日行迹的长度

代表了全年
太阳赤纬的 46.8 度

但为什么它是八字形
而不是一条直线呢?

这是由于
地球公转的另一个特点,

它的轨道偏心率。

地球绕太阳运行的轨道
是一个椭圆,

它与太阳的距离
在不同的点发生变化。 万有引力

的相应变化

导致地球
在一月份

到达离太阳最近

的近日点时移动最快,

而在七
月份到达最远点

即远日点时移动速度最慢。

地球的偏心率
意味着太阳正午,即太阳

在天空中最高的时间,

并不总是发生
在一天中的同一时间。

因此,日晷可能
比常规时钟提前 16 分钟

或落后 14 分钟

事实上,时钟时间和太阳时间
一年只匹配四次。

日行迹的宽度表示
这种偏差的程度。

那么人们是如何知道
几年前的正确时间的呢?

在人类历史的大部分时间里

,太阳的位置
已经足够接近了。

但是在现代,

日晷
和机械钟的区别变得很重要。

时间等式
由托勒密引入

,后来
根据约翰内斯·开普勒的工作进行了改进,

在视太阳时和
我们都依赖的平均时间之间进行转换。

地球仪甚至曾经
在其上印上日行迹

,以便人们根据一年中的某一天确定

时钟时间和太阳时之间的差异

八字迹的出现方式
取决于您所在的位置。

它会
根据您的纬度倾斜一个角度,

如果您
在南半球,它会倒置。

如果你在另一个星球上,

你可能会发现一些
完全不同的东西。

根据该行星的
轨道偏心率和轴向倾斜度,

日行迹可能会显示为泪滴状、

椭圆形,

甚至是一条直线。