This thought experiment will help you understand quantum mechanics Matteo Fadel

After a long day working
on the local particle accelerator,

you and your friends head to the arcade
to unwind.

The lights go out for a second,
and when they come back,

there before you gleams a foosball table
nobody remembers seeing before.

Always game, you insert your coins.

And with a fanfare,
Quantum Foosball begins.

Here are the rules:
as with normal foosball,

the object is to score points

by spinning levers with tiny players
to sink the ball in your opponent’s goal.

Only instead of a standard ball,
you’ll be playing with a giant electron.

It behaves like a normal electron
in all respects, it’s just much larger.

Though the rules are simple,
gameplay is anything but.

Instead of the familiar laws
of Newtonian physics,

the movement of the ball is governed
by quantum mechanics.

To minimize the influence
from photons and air molecules,

you’ll be playing in a vacuum.
In the dark.

But that’s ok, because you can watch
for the flashes of light

given off by collisions
between figures and the ball.

The goals themselves will flash
when the electron

hits their particle detectors.

Now you just have to figure out how
to get the electron to go where you want.

As soon as it enters play,
the electron will never rest.

This is a direct consequence
of the Heisenberg Uncertainty Principle,

which says that the better you know
where a quantum particle is,

the less you know about its velocity,
and vice versa.

Since you know it’s on the field,
its velocity is largely uncertain.

The electron will behave more like a wave
than a particle,

with its position described by probability
distributions that you’ll have to imagine.

These distributions are spread throughout
the entire field,

making it possible to observe a goal
at any time and in either side.

The way to win is to control
and concentrate the distribution

over the opposite goal,

giving yourself the highest likelihood
of scoring points.

Your skill as a player will be determined
by your ability to predict

where the electron is most likely to be,

then manipulate the probability
distribution by spinning the rods

with just the right amount of strength.

Quantum particles only receive energy
in precise amounts, called quanta.

So spin too hard or too soft,

and the electron will stay
on its previous course.

The game board has been carefully
constructed to contain the electron,

but even so, sometimes it’ll quantum
tunnel through the walls

without any apparent reason.

At that point it could be anywhere
in the universe,

so to save you the trouble
of tracking it down,

the game will spit out a new ball.

The fact that quantum particles behave
like waves

becomes particularly evident
in the presence of obstacles.

As the particle travels through the rows
of miniature figures,

complicated interference patterns will
develop in the probability distribution,

making it even more difficult
to accurately predict its position.

And here’s where your advanced physics
degree can finally come in handy:

you can use the laws of quantum mechanics
to your advantage.

The only moments when the electron
will behave as a particle,

rather than a wave,
are when it hits something.

With frequent enough kicks,

the particle would have no time to evolve
like a wave and, therefore,

not spread out in space.

So if you can pass it very quickly
between two of your miniatures,

you can keep it localized.

Masters of the game call this
the Quantum Zeno Maneuver.

Now, if you really want to dominate
your opponents,

there’s one more thing you can try,
but it’s pretty tricky.

One of the distinctive features
of the quantum world

is the possibility
of state superpositions,

where particles’ positions or velocities

can be simultaneously in two or more
different states.

If you can put the electron
into a superposition

of being simultaneously kicked
and not kicked,

it’ll be almost impossible
for your opponents to figure out

where and how to strike.

It’s said that Erwin Schrödinger,

the greatest Quantum Foosball champion
of all time,

is the only player to have mastered
this technique.

But maybe you can be the second:

Just figure out a way to simultaneously
turn and not turn your rods.

在当地的粒子加速器上工作了一整天后,

您和您的朋友们前往
拱廊放松身心。

灯熄灭了一秒钟
,当它们回来时

,在你面前闪烁着一张
没有人记得以前见过的桌上足球桌。

总是游戏,你插入你的硬币。

大张旗鼓地,
Quantum Foosball 开始了。

以下是规则
:与普通桌上足球一样

,目标是

通过与小球员
一起旋转杠杆将球击入对手球门来得分。

只不过
你玩的是一个巨大的电子,而不是一个标准的球。

它在所有方面都表现得像一个普通的电子
,只是要大得多。

尽管规则很简单,
但游戏玩法却绝非如此。

与熟悉
的牛顿物理学定律不同,

球的运动
由量子力学控制。

为了尽量
减少光子和空气分子的影响,

您将在真空中演奏。
在黑暗中。

但这没关系,因为您可以观察

人物和球之间的碰撞发出的闪光。

当电子

撞击粒子探测器时,目标本身会闪烁。

现在你只需要弄清楚
如何让电子去你想要的地方。

一旦进入游戏
,电子就永远不会停止。


是海森堡不确定性原理的直接结果,

它说你越
了解量子粒子的位置

,你对其速度的了解就越少,
反之亦然。

既然你知道它在球场上,
它的速度在很大程度上是不确定的。

电子的行为更像波而
不是粒子

,其位置由
您必须想象的概率分布描述。

这些分布分布在
整个球场上

,因此可以
在任何时间、任何一方观察目标。

获胜的方法是控制
和集中分布

在相反的目标上,

让自己获得最高
得分的可能性。

您作为玩家的
技能将取决于您预测

电子最有可能在哪里的能力,

然后
通过

以适当的力量旋转棒来操纵概率分布。

量子粒子只接收
精确数量的能量,称为量子。

所以旋转太硬或太软

,电子都会
保持原来的轨道。

游戏板经过精心
构造以包含电子,

但即便如此,有时它会

没有任何明显原因的情况下穿过墙壁。

那时它可能
在宇宙中的任何地方,

所以为了省去你
追踪它的麻烦

,游戏会吐出一个新球。

量子粒子表现得像波这一事实

在障碍物的存在下变得尤为明显。

随着粒子穿过
一排排微型图形,

在概率分布中会出现复杂的干涉图案,

使得
准确预测其位置变得更加困难。

这就是你的高级物理学
学位最终可以派上用场的地方:

你可以利用量子力学定律
来发挥自己的优势。

电子
将表现为粒子

而不是波
的唯一时刻是它撞击某物时。

如果踢得足够频繁

,粒子就没有时间
像波浪一样进化,因此

不会在太空中扩散。

因此,如果您可以
在两个微缩模型之间快速传递它,

则可以将其保持本地化。

游戏大师
称之为量子芝诺机动。

现在,如果你真的想控制
你的对手,

还有一件事你可以尝试,
但这很棘手。 量子

世界的显着特征
之一

是状态叠加的可能性,

其中粒子的位置或速度

可以同时处于两种或多种
不同的状态。

如果你能将电子置于

同时被踢
和未被踢的叠加态,

你的对手几乎不可能弄清楚在

哪里以及如何打击。

据说,

有史以来最伟大的量子足球
冠军欧文·薛定谔

是唯一掌握
这项技术的球员。

但也许你可以成为第二个:

想办法同时
转动而不是转动你的杆。