Why do our bodies age Monica Menesini

In 1997, a French woman named
Jeanne Calment

passed away after 122 years
and 164 days on this Earth,

making her the oldest known
person in history.

Her age was so astounding

that a millionaire pledged $1 million
to anyone who could break her record.

But in reality, living to this age
or beyond

is a feat that very few,
maybe even no humans,

are likely to accomplish.

Human bodies just aren’t built
for extreme aging.

Our capacity is set at about 90 years.

But what does aging really mean

and how does it counteract
the body’s efforts to stay alive?

We know intuitively what it means to age.

For some, it means growing up,

while for others, it’s growing old.

Yet finding a strict scientific definition
of aging is a challenge.

What we can say is that aging
occurs when intrinsic processes

and interactions with the environment,
like sunlight,

and toxins in the air, water,
and our diets,

cause changes in the structure

and function of the body’s
molecules and cells.

Those changes in turn drive their decline,

and subsequently, the failure
of the whole organism.

The exact mechanisms of aging
are poorly understood.

But recently, scientists have identified
nine physiological traits,

ranging from genetic changes

to alterations in
a cell’s regenerative ability

that play a central role.

Firstly, as the years pass, our bodies
accumulate genetic damage

in the form of DNA lesions.

These occur naturally when the body’s
DNA replicates,

but also in non-dividing cells.

Organelles called mitochondria
are especially prone to this damage.

Mitochondria produce
adenosine triphosphate,

or ATP,

the main energy source for
all cellular processes,

plus mitochondria regulate
many different cell activities

and play an important role
in programmed cell death.

If mitochondrial function declines,

then cells and, later on, whole organs,
deteriorate, too.

Other changes are known to occur
in the expression patterns of genes,

also known as epigenetic alterations,

that affect the body’s tissues and cells.

Genes silenced or expressed
only at low levels in newborns

become prominent in older people,

leading to the development
of degenerative diseases,

like Alzheimer’s, which accelerate aging.

Even if we could avoid all these harmful
genetic alterations,

not even our own cells could save us.

The fact remains
that cellular regeneration,

the very stuff of life,

declines as we age.

The DNA in our cells is packaged
within chromosomes,

each of which has two protective regions
at the extremities called telomeres.

Those shorten every time cells replicate.

When telomeres become too short,

cells stop replicating and die,

slowing the body’s ability
to renew itself.

With age,
cells increasingly grow senescent, too,

a process that halts the cell cycle
in times of risk,

like when cancer cells are proliferating.

But the response
also kicks in more as we age,

halting cell growth and cutting short
their ability to replicate.

Aging also involves stem cells
that reside in many tissues

and have the property of dividing
without limits to replenish other cells.

As we get older,
stem cells decrease in number

and tend to lose
their regenerative potential,

affecting tissue renewal and maintenance
of our organs original functions.

Other changes revolve around cells'
ability to function properly.

As they age, they stop being able to do
quality control on proteins,

causing the accumulation of damaged
and potentially toxic nutrients,

leading to excessive metabolic activity
that could be fatal for them.

Intercellular communication also slows,

ultimately undermining
the body’s functional ability.

There’s a lot we don’t yet
understand about aging.

Ultimately, does longer life
as we know it come down to diet,

exercise,

medicine,

or something else?

Will future technologies,
like cell-repairing nanobots,

or gene therapy,

artificially extend our years?

And do we want to live longer
than we already do?

Starting with 122 years as inspiration,

there’s no telling where our curiosity
might take us.

1997 年,一位名叫
珍妮·卡尔芒的法国妇女

在地球上生活了 122 年零 164 天后去世,

使她成为历史上已知的最年长的
人。

她的年龄如此惊人

,以至于一位百万富翁承诺
向任何能够打破她记录的人提供 100 万美元。

但实际上,活到这个年龄
或更长的时间

是一项很少,
甚至可能没有

人类可能完成的壮举。

人体并不是
为极度衰老而生的。

我们的产能设定在 90 年左右。

但衰老的真正含义是

什么,它如何
抵消身体维持生命的努力?

我们直觉地知道衰老意味着什么。

对一些人来说,这意味着长大,而对另一些人来说,这意味着变

老。

然而,为衰老找到一个严格的科学定义
是一项挑战。

我们可以说的是,
当内在过程

和与环境的相互作用(
如阳光、

空气、水和我们的饮食中的毒素)

导致身体分子和细胞的结构和功能发生变化时,就会发生

衰老。

这些变化反过来又导致它们的衰退,

并随后导致
整个有机体的失败。

人们对衰老的确切机制
知之甚少。

但最近,科学家们已经确定了
九种生理特征,

从基因变化

到细胞再生能力

的改变,这些特征发挥着核心作用。

首先,随着岁月的流逝,我们的身体

以 DNA 损伤的形式积累遗传损伤。

当身体的
DNA 复制时,这些自然发生,

但也发生在非分裂细胞中。

称为线粒体的细胞
器特别容易受到这种损伤。

线粒体产生
三磷酸腺苷

或 ATP,

它是所有细胞过程的主要能量来源
,而且

线粒体调节
许多不同的细胞活动,


在程序性细胞死亡中发挥重要作用。

如果线粒体功能下降,

那么细胞以及随后的整个器官
也会退化。

已知其他变化发生
在基因的表达模式中,

也称为表观遗传改变,

这些变化会影响身体的组织和细胞。

在新生儿中沉默或仅在低水平表达的基因

在老年人中变得突出,

导致
退化性疾病的发展,

如阿尔茨海默氏症,加速衰老。

即使我们可以避免所有这些有害的
基因改变

,即使是我们自己的细胞也无法拯救我们。

事实仍然是
,细胞再生

,即生命的

本质,随着年龄的增长而下降。

我们细胞中的 DNA 包装
在染色体中,

每个染色体的末端都有两个保护区域
,称为端粒。

每次细胞复制时,这些都会缩短。

当端粒变得太短时,

细胞会停止复制并死亡,

从而减缓身体
自我更新的能力。

随着年龄的增长,
细胞也会越来越衰老,

这一过程会在发生风险时停止细胞周期

例如癌细胞增殖时。


随着年龄的

增长,这种反应也会更加活跃,阻止细胞生长并缩短
它们的复制能力。

衰老还涉及
存在于许多组织中的干细胞,这些干细胞具有

无限分裂以补充其他细胞的特性。

随着年龄的增长,
干细胞数量会减少,

并且往往会失去
其再生潜力,

从而影响组织更新和
维持我们器官的原始功能。

其他变化围绕细胞
正常运作的能力展开。

随着年龄的增长,他们不再能够
对蛋白质进行质量控制,

导致受损
和潜在有毒营养素的积累,

导致过度的代谢活动
,这对他们来说可能是致命的。

细胞间通讯也会减慢,

最终
破坏身体的功能。 关于衰老,

我们还有很多不
明白的地方。

归根结底,
我们所知道的长寿是否归结为饮食、

锻炼、

药物

或其他什么?

未来的技术,
比如细胞修复纳米机器人

或基因疗法,会

人为地延长我们的寿命吗?

我们是否想活得比现在更长

从 122 年作为灵感开始

,不知道我们的好奇心
会将我们带向何方。