The microbial jungles all over the place and you Scott Chimileski and Roberto Kolter

As we walk through our daily environments,

we’re surrounded by exotic creatures

that are too small to see
with the naked eye.

We usually imagine these
microscopic organisms, or microbes,

as asocial cells that float around
by themselves.

But in reality,
microbes gather by the millions

to form vast communities
known as biofilms.

Natural biofilms are like
miniature jungles

filled with many kinds of microbes
from across the web of life.

Bacteria and archaea mingle with
other microbes

like algae, fungi, and protozoa,

forming dense, organized structures
that grow on almost any surface.

When you pad across a river bottom,

touch the rind of an aged cheese,

tend your garden soil,

or brush your teeth,

you’re coming into contact with these
invisible ecosystems.

To see how biofilms come about,

let’s watch one as it develops
on a submerged river rock.

This type of biofilm might begin
with a few bacteria

swimming through their liquid environment.

The cells use rotating flagella
to propel towards the surface of the rock,

which they attach to with the help
of sticky appendages.

Then, they start producing an
extracellular matrix

that holds them together as they divide
and reproduce.

Before long, microcolonies arise,

clusters of cells sheathed in this slimy,
glue-like material.

Microcolonies grow to become towers,

while water channels flow around them,

functioning like a basic
circulatory system.

But why do microbes build
such complex communities

when they could live alone?

For one thing, microbes
living in a biofilm

are rooted in a relatively
stable microenvironment

where they may have access
to a nutrient source.

There’s also safety in numbers.

Out in the deep, dark wilderness
of the microbial world,

isolated microbes face serious risks.

Predators want to eat them,

immune systems seek to destroy them,

and there are physical dangers, too,

like running out of water
and drying up.

However, in a biofilm,
the extracellular matrix

shields microbes from external threats.

Biofilms also enable interactions
between individual cells.

When microbes are packed against
each other in close proximity,

they can communicate,

exchange genetic information,

and engage in cooperative
and competitive social behaviors.

Take the soil in your garden,

home to thousands of bacterial species.

As one species colonizes a plant root,

its individual cells might differentiate
into various subpopulations,

each carrying out a specific task.

Matrix producers pump out
the extracellular goo,

swimmers assemble flagella
and are free to move about or migrate,

and spore-formers produce dormant,
tough endospores

that survive starvation,

temperature extremes,

and harmful radiation.

This phenomenon is called
division of labor.

Ultimately, it gives rise to
a sophisticated system of cooperation

that’s somewhat like
a multicellular organism in itself.

But because biofilms often contain
many different microbes

that aren’t closely related to each other,

interactions can also be competitive.

Bacteria launch vicious attacks
on their competitors

by secreting chemicals
into the environment,

or by deploying molecular spears
to inject nearby cells with toxins

that literally blow them up.

In the end, competition
is all about resources.

If one species eliminates another,

it keeps more space and food for itself.

Although this dramatic life cycle
occurs beyond the limits of our vision,

microbial communities provide humans
and other species with tangible,

and sometimes even delicious, benefits.

Microbes make up a major fraction
of the biomass on Earth

and play a critical role
within the global ecosystem

that supports all larger organisms,

including us.

They produce much of the oxygen we breath,

and are recruited to clean up
environmental pollution, like oil spills,

or to treat our waste water.

Not to mention, biofilms are normal
and flavor enhancing parts

of many of the foods we enjoy,

including cheese,

salami,

and kombucha.

So the next time you brush your teeth,

bite into that cheese rind,

sift through garden soil,

or skip a river stone,

look as close as you can.

Imagine the microbial jungles
all around you

waiting to be discovered and explored.

当我们在日常环境中穿行时,

我们会被外来生物包围,这些生物

太小而无法
用肉眼看到。

我们通常将这些
微观有机体或微生物想象

为自行漂浮的非社会细胞

但实际上,
数以百万计的微生物聚集

在一起形成了
被称为生物膜的庞大群落。

天然生物膜就像
微型丛林,

充满了
来自整个生命网络的多种微生物。

细菌和古细菌与

藻类、真菌和原生动物等其他微生物混合在一起,

形成致密、有组织的结构
,几乎可以在任何表面上生长。

当您穿过河底、

触摸陈年奶酪的外皮、

照料您的花园土壤

或刷牙时,

您将接触到这些
无形的生态系统。

要了解生物膜是如何产生的,

让我们来看看它
在淹没的河流岩石上的形成过程。

这种类型的生物膜可能
始于一些细菌

在其液体环境中游动。

细胞使用旋转鞭毛
向岩石表面推进,

它们
在粘性附属物的帮助下附着在岩石表面。

然后,它们开始产生一种
细胞外基质

,在它们分裂和繁殖时将它们结合在一起

不久之后,就会出现微

集落,细胞簇包裹在这种粘稠的
胶状材料中。

微菌落长成塔,

而水道在它们周围流动

,就像一个基本的
循环系统。

但是,当微生物

可以单独生活时,为什么它们会建立如此复杂的群落呢?

一方面,
生活在生物膜

中的微生物植根于相对
稳定的微环境中

,在那里它们
可以获得营养来源。

数字也有安全性。

在微生物世界的深处,黑暗的荒野
中,

孤立的微生物面临着严重的风险。

捕食者想吃掉它们,

免疫系统试图摧毁它们,

而且还有身体上的危险,

比如缺水
和干涸。

然而,在生物膜中
,细胞外基质

保护微生物免受外部威胁。

生物膜还可以
实现单个细胞之间的相互作用。

当微生物
相互靠近时,

它们可以交流、

交换遗传信息,

并参与合作
和竞争的社会行为。

以您花园中的土壤为例,

那里是成千上万种细菌的家园。

当一个物种在植物根部定居时,

它的单个细胞可能会分化
成不同的亚群,每个亚群

都执行特定的任务。

基质生产者
抽出细胞外粘液,

游泳者组装鞭毛
并可以自由移动或迁移

,孢子形成者产生休眠、
坚韧的内生孢子

,在饥饿、

极端温度

和有害辐射下生存。

这种现象称为
分工。

最终,它产生了
一个复杂的合作系统,它

本身有点像
多细胞生物。

但由于生物膜通常包含
许多

彼此不密切相关的不同微生物,因此

相互作用也可能具有竞争性。

细菌

通过向环境中分泌化学物质

或通过部署分子长矛
向附近的细胞注入毒素

,从而将它们彻底炸毁,从而对其竞争对手发起恶毒攻击。

归根结底,竞争
都是关于资源的。

如果一个物种消灭了另一个物种,

它就会为自己保留更多的空间和食物。

尽管这种戏剧性的生命周期
超出了我们的视野范围,但

微生物群落为人类
和其他物种提供了切实的

,有时甚至是美味的好处。

微生物占
地球上生物量的主要部分,


支持包括我们在内的所有大型生物的全球生态系统中发挥着关键作用

它们产生我们呼吸的大部分氧气,

并被招募来清理
环境污染,如漏油,

或处理我们的废水。

更不用说,生物膜是

我们喜欢的许多食物的正常和增味部分,

包括奶酪、

意大利腊肠

和康普茶。

因此,下次你刷牙、

咬奶酪皮、

筛选花园土壤

或跳过河石时,

尽可能靠近地看。

想象一下你周围的微生物丛林

等待被发现和探索。