Laura Schulz The surprisingly logical minds of babies

Mark Twain summed up
what I take to be

one of the fundamental problems
of cognitive science

with a single witticism.

He said, “There’s something
fascinating about science.

One gets such wholesale
returns of conjecture

out of such a trifling
investment in fact.”

(Laughter)

Twain meant it as a joke,
of course, but he’s right:

There’s something
fascinating about science.

From a few bones, we infer
the existence of dinosuars.

From spectral lines,
the composition of nebulae.

From fruit flies,

the mechanisms of heredity,

and from reconstructed images
of blood flowing through the brain,

or in my case, from the behavior
of very young children,

we try to say something about
the fundamental mechanisms

of human cognition.

In particular, in my lab in the Department
of Brain and Cognitive Sciences at MIT,

I have spent the past decade
trying to understand the mystery

of how children learn so much
from so little so quickly.

Because, it turns out that
the fascinating thing about science

is also a fascinating
thing about children,

which, to put a gentler
spin on Mark Twain,

is precisely their ability
to draw rich, abstract inferences

rapidly and accurately
from sparse, noisy data.

I’m going to give you
just two examples today.

One is about a problem of generalization,

and the other is about a problem
of causal reasoning.

And although I’m going to talk
about work in my lab,

this work is inspired by
and indebted to a field.

I’m grateful to mentors, colleagues,
and collaborators around the world.

Let me start with the problem
of generalization.

Generalizing from small samples of data
is the bread and butter of science.

We poll a tiny fraction of the electorate

and we predict the outcome
of national elections.

We see how a handful of patients
responds to treatment in a clinical trial,

and we bring drugs to a national market.

But this only works if our sample
is randomly drawn from the population.

If our sample is cherry-picked
in some way –

say, we poll only urban voters,

or say, in our clinical trials
for treatments for heart disease,

we include only men –

the results may not generalize
to the broader population.

So scientists care whether evidence
is randomly sampled or not,

but what does that have to do with babies?

Well, babies have to generalize
from small samples of data all the time.

They see a few rubber ducks
and learn that they float,

or a few balls and learn that they bounce.

And they develop expectations
about ducks and balls

that they’re going to extend
to rubber ducks and balls

for the rest of their lives.

And the kinds of generalizations
babies have to make about ducks and balls

they have to make about almost everything:

shoes and ships and sealing wax
and cabbages and kings.

So do babies care whether
the tiny bit of evidence they see

is plausibly representative
of a larger population?

Let’s find out.

I’m going to show you two movies,

one from each of two conditions
of an experiment,

and because you’re going to see
just two movies,

you’re going to see just two babies,

and any two babies differ from each other
in innumerable ways.

But these babies, of course,
here stand in for groups of babies,

and the differences you’re going to see

represent average group differences
in babies' behavior across conditions.

In each movie, you’re going to see
a baby doing maybe

just exactly what you might
expect a baby to do,

and we can hardly make babies
more magical than they already are.

But to my mind the magical thing,

and what I want you to pay attention to,

is the contrast between
these two conditions,

because the only thing
that differs between these two movies

is the statistical evidence
the babies are going to observe.

We’re going to show babies
a box of blue and yellow balls,

and my then-graduate student,
now colleague at Stanford, Hyowon Gweon,

is going to pull three blue balls
in a row out of this box,

and when she pulls those balls out,
she’s going to squeeze them,

and the balls are going to squeak.

And if you’re a baby,
that’s like a TED Talk.

It doesn’t get better than that.

(Laughter)

But the important point is it’s really
easy to pull three blue balls in a row

out of a box of mostly blue balls.

You could do that with your eyes closed.

It’s plausibly a random sample
from this population.

And if you can reach into a box at random
and pull out things that squeak,

then maybe everything in the box squeaks.

So maybe babies should expect
those yellow balls to squeak as well.

Now, those yellow balls
have funny sticks on the end,

so babies could do other things
with them if they wanted to.

They could pound them or whack them.

But let’s see what the baby does.

(Video) Hyowon Gweon: See this?
(Ball squeaks)

Did you see that?
(Ball squeaks)

Cool.

See this one?

(Ball squeaks)

Wow.

Laura Schulz: Told you. (Laughs)

(Video) HG: See this one?
(Ball squeaks)

Hey Clara, this one’s for you.
You can go ahead and play.

(Laughter)

LS: I don’t even have to talk, right?

All right, it’s nice that babies
will generalize properties

of blue balls to yellow balls,

and it’s impressive that babies
can learn from imitating us,

but we’ve known those things about babies
for a very long time.

The really interesting question

is what happens when we show babies
exactly the same thing,

and we can ensure it’s exactly the same
because we have a secret compartment

and we actually pull the balls from there,

but this time, all we change
is the apparent population

from which that evidence was drawn.

This time, we’re going to show babies
three blue balls

pulled out of a box
of mostly yellow balls,

and guess what?

You [probably won’t] randomly draw
three blue balls in a row

out of a box of mostly yellow balls.

That is not plausibly
randomly sampled evidence.

That evidence suggests that maybe Hyowon
was deliberately sampling the blue balls.

Maybe there’s something special
about the blue balls.

Maybe only the blue balls squeak.

Let’s see what the baby does.

(Video) HG: See this?
(Ball squeaks)

See this toy?
(Ball squeaks)

Oh, that was cool. See?
(Ball squeaks)

Now this one’s for you to play.
You can go ahead and play.

(Fussing)
(Laughter)

LS: So you just saw
two 15-month-old babies

do entirely different things

based only on the probability
of the sample they observed.

Let me show you the experimental results.

On the vertical axis, you’ll see
the percentage of babies

who squeezed the ball in each condition,

and as you’ll see, babies are much
more likely to generalize the evidence

when it’s plausibly representative
of the population

than when the evidence
is clearly cherry-picked.

And this leads to a fun prediction:

Suppose you pulled just one blue ball
out of the mostly yellow box.

You [probably won’t] pull three blue balls
in a row at random out of a yellow box,

but you could randomly sample
just one blue ball.

That’s not an improbable sample.

And if you could reach into
a box at random

and pull out something that squeaks,
maybe everything in the box squeaks.

So even though babies are going to see
much less evidence for squeaking,

and have many fewer actions to imitate

in this one ball condition than in
the condition you just saw,

we predicted that babies themselves
would squeeze more,

and that’s exactly what we found.

So 15-month-old babies,
in this respect, like scientists,

care whether evidence
is randomly sampled or not,

and they use this to develop
expectations about the world:

what squeaks and what doesn’t,

what to explore and what to ignore.

Let me show you another example now,

this time about a problem
of causal reasoning.

And it starts with a problem
of confounded evidence

that all of us have,

which is that we are part of the world.

And this might not seem like a problem
to you, but like most problems,

it’s only a problem when things go wrong.

Take this baby, for instance.

Things are going wrong for him.

He would like to make
this toy go, and he can’t.

I’ll show you a few-second clip.

And there’s two possibilities, broadly:

Maybe he’s doing something wrong,

or maybe there’s something
wrong with the toy.

So in this next experiment,

we’re going to give babies
just a tiny bit of statistical data

supporting one hypothesis over the other,

and we’re going to see if babies
can use that to make different decisions

about what to do.

Here’s the setup.

Hyowon is going to try to make
the toy go and succeed.

I am then going to try twice
and fail both times,

and then Hyowon is going
to try again and succeed,

and this roughly sums up my relationship
to my graduate students

in technology across the board.

But the important point here is
it provides a little bit of evidence

that the problem isn’t with the toy,
it’s with the person.

Some people can make this toy go,

and some can’t.

Now, when the baby gets the toy,
he’s going to have a choice.

His mom is right there,

so he can go ahead and hand off the toy
and change the person,

but there’s also going to be
another toy at the end of that cloth,

and he can pull the cloth towards him
and change the toy.

So let’s see what the baby does.

(Video) HG: Two, three. Go!
(Music)

LS: One, two, three, go!

Arthur, I’m going to try again.
One, two, three, go!

YG: Arthur, let me try again, okay?

One, two, three, go!
(Music)

Look at that. Remember these toys?

See these toys? Yeah, I’m going
to put this one over here,

and I’m going to give this one to you.

You can go ahead and play.

LS: Okay, Laura, but of course,
babies love their mommies.

Of course babies give toys
to their mommies

when they can’t make them work.

So again, the really important question
is what happens when we change

the statistical data ever so slightly.

This time, babies are going to see the toy
work and fail in exactly the same order,

but we’re changing
the distribution of evidence.

This time, Hyowon is going to succeed
once and fail once, and so am I.

And this suggests it doesn’t matter
who tries this toy, the toy is broken.

It doesn’t work all the time.

Again, the baby’s going to have a choice.

Her mom is right next to her,
so she can change the person,

and there’s going to be another toy
at the end of the cloth.

Let’s watch what she does.

(Video) HG: Two, three, go!
(Music)

Let me try one more time.
One, two, three, go!

Hmm.

LS: Let me try, Clara.

One, two, three, go!

Hmm, let me try again.

One, two, three, go!
(Music)

HG: I’m going
to put this one over here,

and I’m going to give this one to you.

You can go ahead and play.

(Applause)

LS: Let me show you
the experimental results.

On the vertical axis,
you’ll see the distribution

of children’s choices in each condition,

and you’ll see that the distribution
of the choices children make

depends on the evidence they observe.

So in the second year of life,

babies can use a tiny bit
of statistical data

to decide between two
fundamentally different strategies

for acting in the world:

asking for help and exploring.

I’ve just shown you
two laboratory experiments

out of literally hundreds in the field
that make similar points,

because the really critical point

is that children’s ability
to make rich inferences from sparse data

underlies all the species-specific
cultural learning that we do.

Children learn about new tools
from just a few examples.

They learn new causal relationships
from just a few examples.

They even learn new words,
in this case in American Sign Language.

I want to close with just two points.

If you’ve been following my world,
the field of brain and cognitive sciences,

for the past few years,

three big ideas will have come
to your attention.

The first is that this is
the era of the brain.

And indeed, there have been
staggering discoveries in neuroscience:

localizing functionally specialized
regions of cortex,

turning mouse brains transparent,

activating neurons with light.

A second big idea

is that this is the era of big data
and machine learning,

and machine learning promises
to revolutionize our understanding

of everything from social networks
to epidemiology.

And maybe, as it tackles problems
of scene understanding

and natural language processing,

to tell us something
about human cognition.

And the final big idea you’ll have heard

is that maybe it’s a good idea we’re going
to know so much about brains

and have so much access to big data,

because left to our own devices,

humans are fallible, we take shortcuts,

we err, we make mistakes,

we’re biased, and in innumerable ways,

we get the world wrong.

I think these are all important stories,

and they have a lot to tell us
about what it means to be human,

but I want you to note that today
I told you a very different story.

It’s a story about minds and not brains,

and in particular, it’s a story
about the kinds of computations

that uniquely human minds can perform,

which involve rich, structured knowledge
and the ability to learn

from small amounts of data,
the evidence of just a few examples.

And fundamentally, it’s a story
about how starting as very small children

and continuing out all the way
to the greatest accomplishments

of our culture,

we get the world right.

Folks, human minds do not only learn
from small amounts of data.

Human minds think
of altogether new ideas.

Human minds generate
research and discovery,

and human minds generate
art and literature and poetry and theater,

and human minds take care of other humans:

our old, our young, our sick.

We even heal them.

In the years to come, we’re going
to see technological innovations

beyond anything I can even envision,

but we are very unlikely

to see anything even approximating
the computational power of a human child

in my lifetime or in yours.

If we invest in these most powerful
learners and their development,

in babies and children

and mothers and fathers

and caregivers and teachers

the ways we invest in our other
most powerful and elegant forms

of technology, engineering and design,

we will not just be dreaming
of a better future,

we will be planning for one.

Thank you very much.

(Applause)

Chris Anderson: Laura, thank you.
I do actually have a question for you.

First of all, the research is insane.

I mean, who would design
an experiment like that? (Laughter)

I’ve seen that a couple of times,

and I still don’t honestly believe
that that can truly be happening,

but other people have done
similar experiments; it checks out.

The babies really are that genius.

LS: You know, they look really impressive
in our experiments,

but think about what they
look like in real life, right?

It starts out as a baby.

Eighteen months later,
it’s talking to you,

and babies' first words aren’t just
things like balls and ducks,

they’re things like “all gone,”
which refer to disappearance,

or “uh-oh,” which refer
to unintentional actions.

It has to be that powerful.

It has to be much more powerful
than anything I showed you.

They’re figuring out the entire world.

A four-year-old can talk to you
about almost anything.

(Applause)

CA: And if I understand you right,
the other key point you’re making is,

we’ve been through these years
where there’s all this talk

of how quirky and buggy our minds are,

that behavioral economics
and the whole theories behind that

that we’re not rational agents.

You’re really saying that the bigger
story is how extraordinary,

and there really is genius there
that is underappreciated.

LS: One of my favorite
quotes in psychology

comes from the social
psychologist Solomon Asch,

and he said the fundamental task
of psychology is to remove

the veil of self-evidence from things.

There are orders of magnitude
more decisions you make every day

that get the world right.

You know about objects
and their properties.

You know them when they’re occluded.
You know them in the dark.

You can walk through rooms.

You can figure out what other people
are thinking. You can talk to them.

You can navigate space.
You know about numbers.

You know causal relationships.
You know about moral reasoning.

You do this effortlessly,
so we don’t see it,

but that is how we get the world right,
and it’s a remarkable

and very difficult-to-understand
accomplishment.

CA: I suspect there are people
in the audience who have

this view of accelerating
technological power

who might dispute your statement
that never in our lifetimes

will a computer do what
a three-year-old child can do,

but what’s clear is that in any scenario,

our machines have so much to learn
from our toddlers.

LS: I think so. You’ll have some
machine learning folks up here.

I mean, you should never bet
against babies or chimpanzees

or technology as a matter of practice,

but it’s not just
a difference in quantity,

it’s a difference in kind.

We have incredibly powerful computers,

and they do do amazingly
sophisticated things,

often with very big amounts of data.

Human minds do, I think,
something quite different,

and I think it’s the structured,
hierarchical nature of human knowledge

that remains a real challenge.

CA: Laura Schulz, wonderful
food for thought. Thank you so much.

LS: Thank you.
(Applause)

马克吐温用一句俏皮话总结
了我认为是认知科学

的基本问题之一

他说:“科学有一些
令人着迷的东西。事实上

,人们从如此微不足道的
投资中获得了如此巨大的猜想回报。”

(笑声)

吐温当然是在开玩笑
,但他是对的:科学

有一些
令人着迷的东西。

从几根骨头,我们推断出
恐龙的存在。

从谱线看,
星云的组成。

从果蝇

、遗传机制

、重建
的血液流经大脑的图像,

或者就我而言,从幼儿的行为

我们试图说出

人类认知的基本机制。

特别是,在我
在麻省理工学院脑与认知科学系的实验室里,

我在过去的十年里
一直试图

了解孩子们如何
从这么少的东西中这么快地学到这么多东西的奥秘。

因为,事实证明,
科学

的迷人之处也是
儿童

的迷人之处,
对马克吐温来说,

这恰恰是他们

从稀疏、嘈杂的数据中快速准确地得出丰富、抽象推论的能力。 今天

我只举
两个例子。

一个是关于泛化的问题

,另一个是
关于因果推理的问题。

虽然我要
谈谈我实验室的工作,但

这项工作的灵感来自
于一个领域,并得益于一个领域。

我感谢世界各地的导师、同事
和合作者。

让我从
泛化问题开始。

从小数据样本中进行
概括是科学的基础。

我们对一小部分选民进行投票

,我们预测
全国选举的结果。

我们
在临床试验中看到少数患者对治疗的反应,

然后我们将药物推向全国市场。

但这只有在我们的样本
是从总体中随机抽取时才有效。

如果我们的样本是以某种方式精心挑选的
——

比如说,我们只对城市选民进行调查,

或者说,在我们
治疗心脏病的临床试验中,

我们只包括男性——

那么结果可能不会推广
到更广泛的人群。

所以科学家们关心证据
是否是随机抽样的,

但这与婴儿有什么关系呢?

好吧,婴儿必须一直
从小数据样本中进行概括。

他们看到一些橡皮鸭
并知道它们会漂浮,

或者看到一些球并知道它们会弹跳。

他们
对鸭子和球

产生了期望,他们将在他们的余生中扩展
到橡皮鸭和球

婴儿必须对鸭子和球做出各种概括,

他们必须对几乎所有东西做出概括:

鞋子、轮船、密封蜡
、卷心菜和国王。

那么婴儿是否关心
他们看到的一小部分证据

是否合理地
代表了更大的人群?

让我们来了解一下。

我要给你看两部电影,

一个来自实验的两个条件
中的每一个

,因为你只会
看两部电影,

你只会看到两个婴儿

,任何两个婴儿都是不同的
以无数种方式。

当然,这些婴儿
在这里代表婴儿群体

,您将看到的

差异代表
婴儿在不同条件下的行为的平均群体差异。

在每部电影中,你都会看到
一个婴儿做的可能

正是你
期望婴儿做的事情

,我们很难让婴儿
变得比现在更神奇。

但在我看来,神奇的事情,

也是我希望你注意的,


这两种情况之间的对比,

因为
这两部电影之间唯一不同的


婴儿将要观察的统计证据。

我们要给婴儿看
一盒蓝色和黄色的球

,我当时的研究生,
现在是斯坦福大学的同事 Hyowon Gweon 将从这个盒子

里连续拉出三个蓝色球

,当她拉出那些 球出来,
她会挤压它们

,球会发出吱吱声。

如果你是个婴儿,
那就像一个 TED 演讲。

没有比这更好的了。

(笑声)

但重要的一点是,

从一个大部分是蓝色球的盒子里连续拉出三个蓝色球真的很容易。

你可以闭着眼睛做到这一点。

这似乎是
来自这个人群的随机样本。

如果你能随意把手伸进一个盒子
里拿出会发出吱吱声的

东西,那么可能盒子里的所有东西都会发出吱吱声。

所以也许婴儿应该期待
那些黄色的球也会发出吱吱声。

现在,那些黄色球
的末端有有趣的棍子,

所以如果婴儿
愿意,他们可以用它们做其他事情。

他们可以敲打他们或敲打他们。

但是让我们看看宝宝做了什么。

(视频) Hyowon Gweon: 看到这个了吗?
(球尖叫)

你看到了吗?
(球发出吱吱声)

酷。

看到这个了吗?

(球发出吱吱声)

哇。

劳拉·舒尔茨:告诉过你。 (笑)

(视频) HG:看到这个了吗?
(球发出吱吱声)

嘿,克拉拉,这个是给你的。
你可以继续玩。

(笑声)

LS:我什至不用说话,对吧?

好吧,婴儿

蓝色球的属性概括为黄色球是

很好的,婴儿
可以通过模仿我们来学习,这令人印象深刻,

但是我们已经知道婴儿的那些事情
很长时间了。

真正有趣的问题

是,当我们向婴儿展示
完全相同的东西时会发生什么

,我们可以确保它完全相同,
因为我们有一个秘密隔间

,我们实际上从那里拉球,

但这一次,我们改变的
只是表面上的人口

从中得出的证据。

这一次,我们将向婴儿展示


一盒黄色球中拉出的三个蓝色球,你

猜怎么着?

你 [可能不会]

从一盒大部分是黄色的球中随机抽出三个连续的蓝色球。

这不是看似合理的
随机抽样证据。

该证据表明,也许孝元
是故意对蓝球进行采样的。

也许蓝球有什么
特别之处。

也许只有蓝色的球会吱吱作响。

让我们看看宝宝是怎么做的。

(视频) HG:看到这个了吗?
(球发出吱吱声)

看到这个玩具了吗?
(球尖叫)

哦,那太酷了。 看?
(球吱吱声)

现在这个是给你玩的。
你可以继续玩。

(大惊小怪)
(笑声)

LS:所以你刚刚看到
两个 15 个月大的婴儿

仅根据
他们观察到的样本的概率做完全不同的事情。

让我给你看一下实验结果。

在垂直轴上,您会看到

在每种情况下挤压球的婴儿的百分比

,正如您将看到的,

当证据似乎能
代表人群

时,婴儿更有可能概括证据而不是
证据清楚时 樱桃采摘。

这导致了一个有趣的预测:

假设你从
大部分是黄色的盒子里拉出一个蓝色的球。

你[可能不会]
从一个黄色盒子中随机拉出三个蓝色球,

但你可以随机
抽取一个蓝色球。

这不是一个不可能的样本。

如果你可以
随意伸入一个盒子

并拉出会发出吱吱声的
东西,也许盒子里的所有东西都会发出吱吱声。

因此,即使婴儿看到
的吱吱声的证据要少得多,

并且

在这种单球条件下模仿的动作比
你刚刚看到的条件下要少得多,

但我们预测婴儿自己
会挤压得更多,

而这正是我们发现的。

所以 15 个月大的婴儿,
在这方面,就像科学家一样,

关心证据
是否是随机抽样的

,他们以此来发展
对世界的期望:

什么会吱吱作响,什么不会,

探索什么,忽略什么 .

现在让我给你看另一个例子,

这次是
关于因果推理的问题。

它始于我们所有人都拥有的令人
困惑的证据问题

那就是我们是世界的一部分。

这对你来说似乎不是问题
,但就像大多数问题一样,

只有当事情出错时才会出现问题。

以这个婴儿为例。

事情对他来说是错误的。

他想让
这个玩具走,但他不能。

我会给你看几秒钟的剪辑。

大致有两种可能性:

也许他做错了什么,

或者
玩具有问题。

所以在下一个实验中,

我们将给
婴儿提供一点点统计数据来

支持一个假设而不是另一个假设

,我们将看看婴儿是否
可以使用它来做出不同的

决定来做什么。

这是设置。

Hyowon 将努力
让玩具成功。

然后我会尝试两次
,两次都失败,

然后 Hyowon 会
再次尝试并成功

,这大致总结了我
与我

在技术领域的研究生的关系。

但这里重要的一点是
它提供了一点证据

表明问题不在于玩具,
而在于人。

有些人可以让这个玩具走,有些人

不能。

现在,当婴儿得到玩具时,
他将有一个选择。

他妈妈就在那儿,

所以他可以继续把玩具
交出来换人,


那块布的末端也会有另一个玩具

,他可以把布拉到他身边来
换玩具。

那么让我们看看宝宝是怎么做的。

(视频)HG:二,三。 去!
(音乐)

LS:一,二,三,走!

亚瑟,我要再试一次。
一、二、三,走!

YG:亚瑟,让我再试一次,好吗?

一、二、三,走!
(音乐)

看那个。 还记得这些玩具吗?

看到这些玩具了吗? 是的,我
要把这个放在这里

,我要把这个给你。

你可以继续玩。

LS:好的,劳拉,当然,
婴儿爱他们的妈妈。

当然,

当他们不能让他们的妈妈工作时,婴儿会给他们玩具。

再说一次,真正重要的问题
是当我们

稍微改变统计数据时会发生什么。

这一次,婴儿将看到玩具
以完全相同的顺序工作和失败,

但我们正在改变
证据的分布。

这一次,孝元会成功
一次,失败一次,我也是。

这表明
谁尝试这个玩具并不重要,玩具坏了。

它并不总是有效。

再次,宝宝将有一个选择。

她妈妈就在她旁边,
所以她可以换人,

布的末端还会有另一个玩具

让我们看看她做了什么。

(视频)HG:二,三,走!
(音乐)

让我再试一次。
一、二、三,走!

唔。

LS:让我试试,克拉拉。

一、二、三,走!

嗯,让我再试一次。

一、二、三,走!
(音乐)

HG:我
要把这个放在这里

,我要把这个给你。

你可以继续玩。

(掌声)

LS:让我给你看
一下实验结果。

在垂直轴上,
您将

看到儿童在每种情况下的选择分布,

并且您会看到
儿童做出的选择的分布

取决于他们观察到的证据。

因此,在生命的第二年,

婴儿可以使用一
点点统计数据

来决定在世界上两种
截然不同

的行动策略:

寻求帮助和探索。

我刚刚向您展示

了该领域数百个实验室实验中的两个
得出相似观点的实验,

因为真正关键的一点

是,儿童
从稀疏数据中做出丰富推论的能力

是我们所做的所有特定物种文化学习的基础。

孩子
们只需通过几个例子就可以了解新工具。

他们只从几个例子中学习了新的因果关系

他们甚至学习新词,
在这种情况下是美国手语。

我想以两点结束。

如果您在过去几年一直关注我的世界,
即大脑和认知科学领域

,那么您

会注意到三个重要的想法

首先,这
是大脑的时代。

事实上,
神经科学领域已经有了惊人的发现:

定位
皮质的功能特殊区域,

让老鼠的大脑变得透明,

用光激活神经元。

第二个重要想法

是,这是大数据
和机器学习的时代

,机器学习有望
彻底改变我们对

从社交网络
到流行病学的一切的理解。

也许,当它
解决场景理解

和自然语言处理的问题时,

可以告诉我们一些
关于人类认知的事情。

你会听到的最后一个重要想法

是,也许这是一个好主意,我们
将对大脑有很多了解,

并且可以大量访问大数据,

因为留给我们自己的设备,

人类是容易犯错的,我们走捷径 ,

我们犯错,我们犯错误,

我们有偏见,并且以无数种方式,

我们把世界弄错了。

我认为这些都是重要的故事

,它们可以告诉我们很多
关于人类的意义,

但我想让你注意,今天
我告诉你一个非常不同的故事。

这是一个关于思想而不是大脑

的故事,特别

是关于人类大脑可以执行的计算类型的故事,

其中涉及丰富的结构化知识
和从少量数据中学习的能力,

几个例子。

从根本上说,这是一个
关于如何从很小的孩子开始

,一直
到我们文化中最伟大的成就

的故事,

我们如何让世界变得正确。

伙计们,人类的大脑不仅仅
从少量数据中学习。

人类的头脑会
想到全新的想法。

人类的思想产生
研究和发现

,人类的思想产生
艺术、文学、诗歌和戏剧

,人类的思想照顾其他人:

我们的老人、我们的年轻人、我们的病人。

我们甚至治愈他们。

在未来的几年里,我们
将看到

超出我想象的技术创新,

但在我或你的有生之年,我们几乎

不可能看到任何
接近人类孩子计算能力的东西

如果我们投资于这些最强大的
学习者及其发展

、婴儿、儿童

、母亲、父亲

、照顾者和

教师,就像我们投资于其他
最强大和优雅

的技术、工程和设计形式一样,

我们将不仅仅是
梦想 美好的未来,

我们将一一筹划。

非常感谢你。

(掌声)

克里斯·安德森:劳拉,谢谢。
我确实有一个问题要问你。

首先,研究是疯狂的。

我的意思是,谁会设计
这样的实验? (笑声)

我已经看过几次了

,我仍然不
相信真的会发生这种情况,

但其他人也做过
类似的实验; 它检查出来。

孩子们真的是那个天才。

LS:你知道,它们
在我们的实验中看起来确实令人印象深刻,

但想想它们
在现实生活中的样子,对吧?

它从婴儿开始。

18 个月后,
它开始和你说话了

,婴儿的第一句话不仅仅是
球和鸭子之类的东西,

它们是“all gone”
,指的是消失,

或者“uh-oh”,指
的是无意的 行动。

它必须那么强大。

它必须
比我向您展示的任何东西都强大得多。

他们正在弄清楚整个世界。

一个四岁的孩子几乎可以和你
谈论任何事情。

(掌声)

CA:如果我理解你的话,
你提出的另一个关键点是,

这些年
来我们一直在谈论

我们的思想是多么古怪和错误

,行为经济学
和整个理论 在这背后

,我们不是理性的代理人。

你真的是在说更大的
故事是多么非凡

,那里确实有
被低估的天才。

LS:我最喜欢
的心理学名言之一

来自社会
心理学家 Solomon Asch

,他说心理学的基本任务

揭开事物不证自明的面纱。

你每天都会做出更多数量级的决定

,让世界变得正确。

您了解对象
及其属性。

当它们被遮挡时,你就知道它们了。
你在黑暗中认识他们。

你可以穿过房间。

你可以弄清楚别人
在想什么。 你可以和他们谈谈。

您可以导航空间。
你知道数字。

你知道因果关系。
你知道道德推理。

您毫不费力地做到了这一点,
所以我们看不到它,

但这就是我们使世界正确的方式
,这是一项了不起

且非常难以理解的
成就。

CA:我怀疑
听众中有些人持有

这种加速
技术力量的观点,

他们可能会质疑你的说法
,即我们有生之年计算机永远不会

像三岁的孩子那样做,

但很明显,在任何 在这种情况下,

我们的机器可以
向我们的幼儿学习很多东西。

LS:我想是的。 你会有一些
机器学习的人在这里。

我的意思是,你永远不应该在实践中
对婴儿、黑猩猩

或技术下注,

但这不仅仅是
数量

上的差异,而是种类上的差异。

我们拥有非常强大的计算机

,它们确实可以做非常
复杂的事情,而且

通常会处理大量数据。

我认为,人类的思维会做
一些完全不同的事情,

而且我认为人类知识的结构化、
等级化性质

仍然是一个真正的挑战。

CA:劳拉·舒尔茨(Laura Schulz),令人
深思。 太感谢了。

LS:谢谢。
(掌声)