The invisible motion of still objects Ran Tivony

Many of the inanimate objects around you
probably seem perfectly still.

But look deep into the atomic structure
of any of them,

and you’ll see a world in constant flux.

Stretching,

contracting,

springing,

jittering,

drifting atoms everywhere.

And though that movement may seem chaotic,
it’s not random.

Atoms that are bonded together,

and that describes almost all substances,

move according to a set of principles.

For example, take molecules,
atoms held together by covalent bonds.

There are three basic ways
molecules can move:

rotation,

translation,

and vibration.

Rotation and translation
move a molecule in space

while its atoms stay
the same distance apart.

Vibration, on the other hand,
changes those distances,

actually altering the molecule’s shape.

For any molecule, you can count up
the number of different ways it can move.

That corresponds to
its degrees of freedom,

which in the context of mechanics

basically means the number of variables
we need to take into account

to understand the full system.

Three-dimensional space is defined by
x, y, and z axes.

Translation allows the molecule to move
in the direction of any of them.

That’s three degrees of freedom.

It can also rotate around
any of these three axes.

That’s three more,

unless it’s a linear molecule,
like carbon dioxide.

There, one of the rotations just spins
the molecule around its own axis,

which doesn’t count because it doesn’t
change the position of the atoms.

Vibration is where it gets a bit tricky.

Let’s take a simple molecule,
like hydrogen.

The length of the bond that holds the two
atoms together is constantly changing

as if the atoms were connected
by a spring.

That change in distance is tiny,
less than a billionth of a meter.

The more atoms and bonds a molecule has,
the more vibrational modes.

For example, a water molecule
has three atoms:

one oxygen and two hydrogens,
and two bonds.

That gives it three modes of vibration:

symmetric stretching,

asymmetric stretching,

and bending.

More complicated molecules have even
fancier vibrational modes,

like rocking,

wagging,

and twisting.

If you know how many atoms a molecule has,
you can count its vibrational modes.

Start with the total degrees of freedom,

which is three times the number
of atoms in the molecule.

That’s because each atom can move
in three different directions.

Three of the total correspond
to translation

when all the atoms
are going in the same direction.

And three, or two for linear molecules,
correspond to rotations.

All the rest, 3N-6
or 3N-5 for linear molecules,

are vibrations.

So what’s causing all this motion?

Molecules move because they absorb
energy from their surroundings,

mainly in the form of heat
or electromagnetic radiation.

When this energy gets transferred
to the molecules,

they vibrate,

rotate,

or translate faster.

Faster motion increases the kinetic energy
of the molecules and atoms.

We define this as an increase
in temperature and thermal energy.

This is the phenomenon your microwave oven
uses to heat your food.

The oven emits microwave radiation,
which is absorbed by the molecules,

especially those of water.

They move around faster and faster,

bumping into each other and increasing
the food’s temperature and thermal energy.

The greenhouse effect is another example.

Some of the solar radiation
that hits the Earth’s surface

is reflected back to the atmosphere.

Greenhouse gases, like water vapor
and carbon dioxide absorb this radiation

and speed up.

These hotter, faster-moving molecules
emit infrared radiation in all directions,

including back to Earth, warming it.

Does all this molecular motion ever stop?

You might think that would happen
at absolute zero,

the coldest possible temperature.

No one’s ever managed to cool
anything down that much,

but even if we could,

molecules would still move due to
a quantum mechanical principle

called zero-point energy.

In other words, everything has been moving
since the universe’s very first moments,

and will keep going long,
long after we’re gone.

你周围的许多无生命物体
可能看起来完全静止。

但是深入
观察其中任何一个的原子结构

,你会看到一个不断变化的世界。 到处都是

伸展、

收缩、

弹跳、

抖动、

漂移的原子。

尽管这种运动看起来很混乱,
但它并不是随机的。

结合在一起

并描述几乎所有物质的原子

根据一组原理移动。

例如,以分子为例,
原子通过共价键结合在一起。 分子

可以通过三种基本方式
移动:

旋转、

平移

和振动。

旋转和平移
使分子在空间中移动,

而其原子之间
的距离保持不变。

另一方面,振动
改变了这些距离,

实际上改变了分子的形状。

对于任何分子,您都可以数出
它可以移动的不同方式的数量。

这对应于
它的自由度

,在力学的背景下,这

基本上意味着我们需要考虑的变量数量

来理解整个系统。

三维空间由
x、y 和 z 轴定义。

平移允许分子向
其中任何一个方向移动。

那是三个自由度。

它也可以围绕
这三个轴中的任何一个旋转。

那是三个以上,

除非它是线性分子,
例如二氧化碳。

在那里,其中一个旋转只是
使分子围绕自己的轴旋转,

这不算数,因为它不会
改变原子的位置。

振动是它变得有点棘手的地方。

让我们以一个简单的分子为例,
比如氢。

将两个
原子结合在一起的键的长度不断变化

,就好像原子
被弹簧连接起来一样。

距离的变化很小,
不到十亿分之一米。

分子具有的原子和键
越多,振动模式就越多。

例如,一个水分子
具有三个原子:

一个氧和两个氢,
以及两个键。

这使它具有三种振动模式:

对称拉伸、

不对称拉伸

和弯曲。

更复杂的分子具有更
奇特的振动模式,

如摇摆、

摇摆

和扭转。

如果你知道一个分子有多少个原子,
你就可以计算它的振动模式。

从总自由度开始,


是分子中原子数的三倍。

那是因为每个原子都可以
在三个不同的方向上移动。

当所有原子
都向同一方向移动时,总数中的三个对应于平移。

三个或两个线性分子
对应于旋转。

其余的,
线性分子的 3N-6 或 3N-5,

都是振动。

那么是什么导致了所有这些运动呢?

分子移动是因为
它们从周围吸收能量,

主要是以热
或电磁辐射的形式。

当这种能量转移
到分子上时,

它们会更快地振动、

旋转

或平移。

更快的运动增加
了分子和原子的动能。

我们将其定义为
温度和热能的增加。

这是您的微波炉
用来加热食物的现象。

烤箱发出微波辐射
,被分子吸收,

尤其是水分子。

它们移动得越来越快,

相互碰撞并
增加食物的温度和热能。

温室效应是另一个例子。

撞击地球表面的一些太阳辐射

被反射回大气层。

温室气体,如水蒸气
和二氧化碳吸收这种辐射

并加速。

这些更热、移动更快的分子
向各个方向发射红外辐射,

包括返回地球,使地球变暖。

所有这些分子运动会停止吗?

你可能认为这会发生
在绝对零,

即最冷的温度。

从来没有人设法将
任何东西冷却到如此程度,

但即使我们可以,

由于称为零点能量的量子力学原理,分子仍然会移动

换句话说,
从宇宙诞生的最初一刻起,一切都在运动,

并且
在我们离开之后很久,很久以后,一切都会继续运动。