Why is Mount Everest so tall Michele Koppes

Every spring,

hundreds of adventure-seekers dream
of climbing Qomolangma,

also known as Mount Everest.

At base camp, they hunker down for months

waiting for the chance to scale
the mountain’s lofty, lethal peak.

But why do people risk life and limb
to climb Everest?

Is it the challenge?

The view?

The chance to touch the sky?

For many, the draw is Everest’s status
as the highest mountain on Earth.

There’s an important distinction
to make here.

Mauna Kea is actually the tallest
from base to summit,

but at 8850 meters above sea level,

Everest has the highest altitude
on the planet.

To understand how
this towering formation was born,

we have to peer deep
into our planet’s crust,

where continental plates collide.

The Earth’s surface
is like an armadillo’s armor.

Pieces of crust constantly move over,

under,

and around each other.

For such huge continental plates,
the motion is relatively quick.

They move two to four
centimeters per year,

about as fast as fingernails grow.

When two plates collide,

one pushes into or underneath the other,
buckling at the margins,

and causing what’s known as uplift
to accomodate the extra crust.

That’s how Everest came about.

50 million years ago, the Earth’s
Indian Plate drifted north,

bumped into the bigger Eurasian Plate,

and the crust crumpled,
creating huge uplift.

Mountain Everest lies at the heart
of this action,

on the edge of the Indian-Eurasian
collision zone.

But mountains are shaped by forces
other than uplift.

As the land is pushed up,
air masses are forced to rise as well.

Rising air cools, causing any water
vapor within it to condense

and form rain or snow.

As that falls,
it wears down the landscape,

dissolving rocks or breaking them down
in a process known as weathering.

Water moving downhill carries
the weathered material

and erodes the landscape,

carving out deep valleys and jagged peaks.

This balance between uplift and erosion
gives a mountain its shape.

But compare the celestial peaks
of the Himalayas

to the comforting hills of Appalachia.

Clearly, all mountains are not alike.

That’s because time
comes into the equation, too.

When continental plates first collide,
uplift happens fast.

The peaks grow tall with steep slopes.

Over time, however, gravity and water
wear them down.

Eventually, erosion overtakes uplift,

wearing down peaks
faster than they’re pushed up.

A third factor shapes mountains: climate.

In subzero temperatures, some snowfall
doesn’t completely melt away,

instead slowly compacting
until it becomes ice.

That forms the snowline, which occurs
at different heights around the planet

depending on climate.

At the freezing poles,
the snowline is at sea level.

Near the equator, you have to climb
five kilometers before it gets cold enough

for ice to form.

Gathered ice starts flowing under
its own immense weight

forming a slow-moving frozen river
known as a glacier,

which grinds the rocks below.

The steeper the mountains,
the faster ice flows,

and the quicker it carves
the underlying rock.

Glaciers can erode landscapes
swifter than rain and rivers.

Where glaciers cling to mountain peaks,
they sand them down so fast,

they lop the tops off
like giant snowy buzzsaws.

So then, how did the icy Mount Everest
come to be so tall?

The cataclysmic continental clash
from which it arose

made it huge to begin with.

Secondly, the mountain lies
near the tropics,

so the snowline is high,
and the glaciers relatively small,

barely big enough to widdle it down.

The mountain exists in a perfect storm
of conditions

that maintain its impressive stature.

But that won’t always be the case.

We live in a changing world
where the continental plates,

Earth’s climate,

and the planet’s erosive power

might one day conspire to cut
Mount Everest down to size.

For now, at least, it remains legendary
in the minds of hikers,

adventurers,

and dreamers alike.

每年春天,

数百名探险者都梦想
着攀登珠穆朗玛峰,

也就是珠穆朗玛峰。

在大本营,他们蹲了好几个月,等待登上

这座高耸而致命的山峰的机会。

但为什么人们冒着生命危险
去攀登珠穆朗玛峰?

是挑战吗?

风景?

触摸天空的机会?

对于许多人来说,平局是珠穆朗玛峰
作为地球上最高山峰的地位。

这里有一个重要的
区别。

Mauna Kea 实际上是
从基地到山顶的最高点,

但海拔 8850 米的

珠穆朗玛峰是地球上海拔最高的地方

要了解
这个高耸的地层是如何诞生的,

我们必须
深入了解

大陆板块碰撞的地壳。

地球
表面就像犰狳的盔甲。

地壳碎片不断地在彼此上方、

下方

和周围移动。

对于如此巨大的大陆板块
,运动相对较快。

它们每年移动两到四
厘米,

大约与指甲生长的速度一样快。

当两个板块发生碰撞时,

一个会推入另一个板块或在另一个板块下方,
在边缘弯曲,

并导致所谓的隆起
以容纳额外的地壳。

珠穆朗玛峰就是这样来的。

5000万年前,地球的
印度板块向北漂移,

撞上了更大的欧亚板块

,地壳皱缩,
形成了巨大的隆起。

珠穆朗玛峰
位于这一行动的中心,

位于印度-欧亚
碰撞区的边缘。

但是山脉是由隆起以外的力量塑造的

随着陆地被推高,
气团也被迫上升。

上升的空气冷却,导致其中的任何
水蒸气凝结

并形成雨或雪。

当它下落时,
它会磨损景观,

溶解岩石或
在称为风化的过程中将它们分解。

下坡的水携带
着风化的物质

,侵蚀了景观,

形成了深谷和锯齿状的山峰。

隆起和侵蚀之间的这种平衡
使一座山有了它的形状。

但是
,将

喜马拉雅山的天峰与阿巴拉契亚令人欣慰的山丘进行比较。

显然,所有的山都不一样。

那是因为
时间也在等式中。

当大陆板块第一次碰撞时,
隆起发生得很快。

山峰长得很高,陡峭的斜坡。

然而,随着时间的推移,重力和水会
磨损它们。

最终,侵蚀超过了隆起,

山峰
被推倒的速度比被推高的速度更快。

塑造山脉的第三个因素:气候。

在零度以下的温度下,一些降雪
不会完全融化,

而是会慢慢压实
直到变成冰。

这形成了雪线,根据气候,它出现
在地球周围的不同高度

在冰冻的两极
,雪线处于海平面。

在赤道附近,您必须爬上
5 公里,然后才能变得足够冷

以形成冰。

聚集的冰在
自身巨大的重量下开始流动,

形成一条缓慢流动的冰冻河流,
称为冰川,

将下面的岩石磨碎。

山越陡峭
,冰

流越快,它切割下层岩石的速度也越快

冰川可以
比雨水和河流更快地侵蚀景观。

在冰川紧贴山峰的地方,
它们将它们打磨得如此之快,

它们
像巨大的雪地圆锯一样将顶部锯掉。

那么,冰冷的珠穆朗玛峰
是如何变得如此高大的呢? 它产生

的灾难性大陆冲突一

开始就变得巨大。

其次,这座山
靠近热带,

所以雪线很高
,冰川相对较小,

几乎没有大到可以把它折腾下来。

这座山存在于完美的
风暴条件下

,保持其令人印象深刻的地位。

但情况并非总是如此。

我们生活在一个不断变化的世界
中,大陆板块、

地球气候

和地球的侵蚀力

有朝一日可能会合力将
珠穆朗玛峰缩小。

至少就目前而言,它仍然
是徒步旅行者、

冒险家

和梦想家心中的传奇。