The surprising reason our muscles get tired Christian Moro

You’re lifting weights.

The first time feels easy,

but each lift takes more and more effort
until you can’t continue.

Inside your arms,

the muscles responsible for the lifting
have become unable to contract.

Why do our muscles get fatigued?

We often blame lactic acid
or running out of energy,

but these factors alone don’t account
for muscle fatigue.

There’s another major contributor:

the muscle’s ability to respond
to signals from the brain.

To understand the roots of muscle fatigue,

it helps to know how a muscle contracts
in response to a signal from a nerve.

These signals travel from the brain to the
muscles in a fraction of a second

via long, thin cells called motor neurons.

The motor neuron and the muscle cell
are separated by a tiny gap,

and the exchange of particles
across this gap enables the contraction.

On one side of the gap,

the motor neuron contains a
neurotransmitter called acetylcholine.

On the other side,

charged particles, or ions,

line the muscle cell’s membrane:

potassium on the inside,
and sodium on the outside.

In response to a signal from the brain,

the motor neuron releases acetylcholine,

which triggers pores on the muscle
cell membrane to open.

Sodium flows in, and potassium flows out.

The flux of these charged particles
is a crucial step for muscle contraction:

the change in charge creates an electrical
signal called an action potential

that spreads through the muscle cell,

stimulating the release of calcium
that’s stored inside it.

This flood of calcium causes
the muscle to contract

by enabling proteins buried in the muscle
fibers to lock together

and ratchet towards each other,

pulling the muscle tight.

The energy used to power the contraction
comes from a molecule called ATP.

ATP also helps pump the ions back
across the membrane afterward,

resetting the balance of sodium
and potassium on either side.

This whole process repeats
every time a muscle contracts.

With each contraction,

energy in the form of ATP gets used up,

waste products like lactic
acid are generated,

and some ions drift away from the muscle’s
cell membrane,

leaving a smaller and
smaller group behind.

Though muscle cells use up ATP as they
contract repeatedly,

they are always making more,

so most of the time

even heavily fatigued muscles still
have not depleted this energy source.

And though many waste products are acidic,

fatigued muscles still maintain pH
within normal limits,

indicating that the tissue is effectively
clearing these wastes.

But eventually, over the course of
repeated contractions

there may not be sufficient concentrations
of potassium, sodium or calcium ions

immediately available near
the muscle cell membrane

to reset the system properly.

So even if the brain sends a signal,

the muscle cell can’t generate the action
potential necessary to contract.

Even when ions like sodium,
potassium or calcium

are depleted in or around the muscle cell,

these ions are plentiful
elsewhere in the body.

With a little time,

they will flow back to the areas
where they’re needed,

sometimes with the help of active sodium
and potassium pumps.

So if you pause and rest,

muscle fatigue will subside as these ions
replenish throughout the muscle.

The more regularly you exercise,

the longer it takes for muscle fatigue
to set in each time.

That’s because the stronger you are,

the fewer times this cycle of nerve signal
from the brain

to contraction in the muscle
has to be repeated

to lift a certain amount of weight.

Fewer cycles means slower ion depletion,

so as your physical fitness improves,

you can exercise for longer
at the same intensity.

Many muscles grow with exercise,

and larger muscles also
have bigger stores of ATP

and a higher capacity to clear waste,

pushing fatigue even
farther into the future.

你在举重。

第一次感觉很轻松,

但每次提升都需要越来越多的努力,
直到无法继续。

在你的手臂内,

负责举重的肌肉
已经无法收缩。

为什么我们的肌肉会疲劳?

我们经常责怪乳酸
或能量耗尽,

但仅这些因素并不能
解释肌肉疲劳。

还有另一个主要贡献者

:肌肉对
来自大脑的信号作出反应的能力。

要了解肌肉疲劳的根源

,有助于了解肌肉如何
响应来自神经的信号而收缩。

这些信号

通过称为运动神经元的细长细胞在几分之一秒内从大脑传递到肌肉。

运动神经元和肌肉细胞
被一个微小的间隙隔开,

穿过这个间隙的粒子交换使收缩成为可能。

在间隙的一侧

,运动神经元含有一种
称为乙酰胆碱的神经递质。

另一方面,

带电粒子或离子

排列在肌肉细胞的膜上:

钾在内部
,钠在外部。

响应来自大脑的信号

,运动神经元释放乙酰胆碱,

从而触发肌肉细胞膜上的毛孔
打开。

钠流入,钾流出。

这些带电粒子的流动
是肌肉收缩的关键步骤:

电荷的变化会产生一种
称为动作电位的电信号,该信号

通过肌肉细胞传播,

刺激
储存在其中的钙的释放。

大量的钙
使肌肉收缩

,使埋藏在肌肉纤维中的蛋白质
锁定在一起

并相互棘轮,

从而拉紧肌肉。

用于为收缩提供动力的能量
来自一种叫做 ATP 的分子。

ATP 还有助于随后将离子泵回
膜上,从而

重置
两侧钠和钾的平衡。

每次肌肉收缩时,整个过程都会重复。

随着每次收缩,

以 ATP 形式存在的能量被耗尽,

产生乳酸等废物

,一些离子从肌肉的
细胞膜上漂走,

留下越来越
小的群体。

尽管肌肉细胞在
反复收缩时会消耗 ATP,

但它们总是会产生更多的能量,

因此大多数时候

即使是极度疲劳的肌肉仍然
没有耗尽这种能量来源。

尽管许多废物是酸性的,但

疲劳的肌肉仍将 pH 值维持
在正常范围内,这

表明组织正在有效地
清除这些废物。

但最终,在
反复收缩的过程中,肌肉细胞膜

附近可能没有足够浓度
的钾、钠或钙离子

立即可用

无法正确地重置系统。

因此,即使大脑发出信号

,肌肉细胞也无法
产生收缩所需的动作电位。

即使像钠、
钾或钙这样的离子

在肌肉细胞内或肌肉细胞周围耗尽,

这些离子
在身体其他部位也很丰富。

稍等片刻,

它们就会流回需要它们的区域

有时在活性钠泵
和钾泵的帮助下。

因此,如果您暂停休息,

肌肉疲劳会随着这些离子
在整个肌肉中的补充而消退。

您锻炼的越频繁,每次出现

肌肉疲劳所需的时间就越长

那是因为你越强壮,

这个从大脑到肌肉收缩的神经信号循环必须重复的次数就越少,

以举起一定的重量。

更少的循环意味着更慢的离子消耗,

因此随着您的身体素质提高,

您可以
在相同强度下锻炼更长时间。

许多肌肉随着运动

而生长,更大的肌肉也
有更多的 ATP 储存

和更高的清除废物的能力,

将疲劳
推向更远的未来。